期刊文献+

Frontiers of Value-at-Risk Forecasting for the Kuala Lumpur Composite Index of Malaysia and Bangkok SET Index of Thailand

Frontiers of Value-at-Risk Forecasting for the Kuala Lumpur Composite Index of Malaysia and Bangkok SET Index of Thailand
下载PDF
导出
摘要 This study utilized two forecasting methods including ARFIMA (p, d, q)-GARCH (p, d, q), and extreme value techniques. One of the puzzling questions raised by evolutionary econometric theory is how two-way behavior is evaluated in two ways, which benefits the investors of the securities, traded on a stock exchange. For the purpose of this study, intra-day secondary data during period of 1997-2010 of the stock-market returns of Bangkok SET (Stock Exchange of Thailand) Index (Thailand) and Kuala Lumpur Composite Index (Malaysia) were collected. For the new perspective framework, the expected values were conducted using ARFIMA (p, d, q)-GARCH (p, q) forecasting method and Generalize Extreme Value (GEV) to confirm the final solutions. The Value-at-Risk (VaR) of those stock-market returns was tested. The new perspective framework of expected value confirmed that ARFIMA (1, 0.29, 1)-GARCH (1, 1) was the best forecasting method for VaR in case of the Kuala Lumpur Composite stock-market returns based on MAPE (%). And the perspective based on extreme case confirmed that Generalize Extreme Value (GEV) as F= (x,μ,σ,ξ): F = (x, 0.00616, 0.00573, 0.36900) was the best forecasting method for VaR in case of the Bangkok SET stock-market returns based on MAPE (%).
机构地区 Chiang Mai University
出处 《Journal of Modern Accounting and Auditing》 2011年第12期1406-1417,共12页 现代会计与审计(英文版)
关键词 Thailand MALAYSIA VaR stock market GEV forecasting method 综合指数 马来西亚 风险价值 值预测 吉隆坡 泰国 曼谷 证券交易所
  • 相关文献

参考文献19

  • 1Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis. Forecasting and control. San Francisco: Holden-Day.
  • 2Embrechts, P., Kluppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin: Springer.
  • 3Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24(2), 180-190.
  • 4Frechet, M. (1927). Sur la loi de probabilit6 de l'6cart maximum. Annales de la Socidt~ Polonaise de Mathematique, 6, 93-116.
  • 5Frechtling, D. (1996). Practical tourism forecasting. Oxford: Butterworth Heinemann.
  • 6Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4), 221-238.
  • 7Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15-39.
  • 8Gumbel, E. J. (1958). Statistics of extremes. New York: Columbia University Press.
  • 9Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165-176.
  • 10Hurst, H. ( 1951 ). Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部