期刊文献+

Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1

基于ACO-SVM的粮虫特征提取研究(英文)
下载PDF
导出
摘要 [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. [目的]研究基于ACO-SVM的粮虫特征提取,探讨粮虫特征提取的可行性。[方法]通过分析储粮害虫图像识别系统中的1个关键环节——特征提取,提出把支持向量机(Support vector machine,简称SVM)算法中交叉验证训练模型的识别率作为储粮害虫特征提取评价准则的1个重要因子,将蚁群优化算法(Ant Colony Optimization,简称ACO)应用于粮虫特征的自动提取。[结果]该算法从粮虫的17维形态学特征中自动提取出面积、周长等7个特征的最优特征子空间,采用参数优化之后的SVM分类器对90个粮虫样本进行分类,识别率达到95%以上。[结论]该研究表明蚁群优化算法在粮虫特征提取中的应用是可行的。
出处 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页 农业科学与技术(英文版)
基金 Supported by the National Natural Science Foundation of China(31101085) the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094) the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION 储粮害虫 蚁群优化算法 支持向量机 特征提取 识别
  • 相关文献

参考文献8

  • 1RIDGWAY C,DAVIES ER,CHAMBERS J.Rapid machine vision method for the detection of insects and other particu-late bio-contaminants of bulk grain intransit[J].Biosystems Engineering,2002,83(1):21-30.
  • 2毛罕平,张红涛.储粮害虫图像识别的研究进展及展望[J].农业机械学报,2008,39(4):175-179. 被引量:27
  • 3NEETHIRAJAN S,KARUNAKARAN C,JAYAS DS,et al.Detection techniques for stored-product insects in grain[J].Food Control,2007,18(2):157-162.
  • 4张红涛,胡玉霞,邱道尹.遗传算法在储粮害虫特征选择中的应用[J].华北水利水电学院学报,2004,25(3):37-39. 被引量:5
  • 5叶志伟,郑肇葆,万幼川,虞欣.基于蚁群优化的特征选择新方法[J].武汉大学学报(信息科学版),2007,32(12):1127-1130. 被引量:23
  • 6CHAHARSOOGHI SK,MEIMAND KE-RMANI AH.An effective ant colony op-timization algorithm(ACO)for multi-ob-jective resource allocation problem(MORAP)[J].Applied Mathematics and Computation,2008,200(1):167-177.
  • 7ZHANG HT,MAO HP.Image recogni-tion and classification of the stored-grain pests based on support vector machine[C]//LI GB.2008Proceedings of information technology and environ-mental system sciences:Vol.2.Beijing:Publishing House of Electronics Indus-try,2008:1217-1221.
  • 8胡玉霞,张红涛.基于模拟退火算法-支持向量机的储粮害虫识别分类[J].农业机械学报,2008,39(9):108-111. 被引量:33

二级参考文献50

共引文献75

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部