摘要
Permanent magnet synchronous motor (PMSM) is widely used in mining, and there exists chaotic behav- ior when it runs. In order to dispel its adverse effect on security in mining, the chaotic system of PMSM was analyzed. With noise disturbances, the complex dynamic characteristics of chaos were also analyzed, and proved the objective existence of chaos. As we all know, it is very difficult for conventional PMSM control to meet the design requirements, therefore, in order to ensure the robustness of the system, the chaotic orbits were stabilized to arbitrary chosen fixed points and periodic orbits by means of sliding mode method. Finally MATLAB simulations were presented to confirm the validity of the controller. The results show that the PMSM with the sliding mode control has a good dynamic performance and steady state accuracy.
Permanent magnet synchronous motor (PMSM) is widely used in mining, and there exists chaotic behav- ior when it runs. In order to dispel its adverse effect on security in mining, the chaotic system of PMSM was analyzed. With noise disturbances, the complex dynamic characteristics of chaos were also analyzed, and proved the objective existence of chaos. As we all know, it is very difficult for conventional PMSM control to meet the design requirements, therefore, in order to ensure the robustness of the system, the chaotic orbits were stabilized to arbitrary chosen fixed points and periodic orbits by means of sliding mode method. Finally MATLAB simulations were presented to confirm the validity of the controller. The results show that the PMSM with the sliding mode control has a good dynamic performance and steady state accuracy.
基金
supported in part by the National Natural Science Foundation of China (No. 50879072)
the Fundamental Research Funds for the Central Universities of CUMT (No.2010QNB33)
The National Undergraduate Innovation Programof CUMT (No. 101029013)