期刊文献+

耗散的量子Zakharov方程解的渐进性行为 被引量:2

Asymptotic Behavior of the Solutions for Dissipative Quantum Zakharov Equations
下载PDF
导出
摘要 主要研究量子Zakharov方程.在先验估计的基础上通过标准的Galerkin逼近方法得到了量子Zakharov方程解的存在唯一性.同时,也讨论了相应的解的渐进性行为,并且构造出在不同的能量空间上弱拓扑意义下的全局吸引子. The dissipative quantum Zakharov equations were mainly studied. The existence and uniqueness of the solutions for dissipative quantum Zakharov equations were proved by the standard Galerkin approximation method on the basis of a priori estimates. Meanwhile, the asymptotic behavior of solutions and the global attractor which was constructed in energy space equipped with weak topology were also investigated.
出处 《应用数学和力学》 CSCD 北大核心 2012年第4期486-499,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(11061003)
关键词 量子Zakharov方程 吸收集 全局吸引子 quantum Zakharov equations absorbing set global attractor
  • 相关文献

参考文献19

  • 1Markowich P A,Ringhofer C A,Schmeiser C.Semiconductor Equations[M].Vienna:Springer,1990.
  • 2Jung Y D.Quantum-mechanical effects on electron-electron scattering in dense high-temperature plas-mas[J].Phys Plasmas,2001,8(8):3842-3844.
  • 3Kremp D,Bornath Th,Bonitz M,Schlanges M.Quantum kinetic theory of plasmas in strong laserfields[J].Phys Rev E,1999,60(4):4725-4732.
  • 4Manfredi G,Haas F.Self-consistent fluid model for a quantum electron gas[J].Phys Rev B,2001,64(7):075316.
  • 5Haas F,Garcia L G,Goedert J,Manfredi G.Quantum ion-acoustic waves[J].Phys Plasmas,2003,10(10):3858-3866.
  • 6López J L.Nonlinear Ginzburg-Landau-type approach to quantum dissipation[J].Phys Rev E,2004,69(2):026110.
  • 7Garcia L G,Haas F,de Oliveira L P L,Goedert J.Modified Zakharov equations for plasmas with aquautum correction[J].Phys Plasmas,2005,12(1):012302-8.
  • 8Zakharov V E.Collapse of Langmuir waves[J].Sov Phys JETP,1972,35:908-914.
  • 9Flahaut I.Attactors for the dissipative Zakharov system[J].Nonlinear Analysis,TMA,1991,16(7/8):599-633.
  • 10Guo B,Shen L.The global existence and uniqueness of classical solutions of periodic initial boundaryproblems of Zakharov equations[J].Acta Math Appl Sin,1982,5(2):310-324.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部