摘要
We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that axe most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks.
We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that axe most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks.