期刊文献+

基于部件的三维目标检测算法新进展 被引量:3

Improvements of 3D Object Detection with Part-based Models
下载PDF
导出
摘要 三维目标检测问题是计算机视觉领域的一个基础而重要的问题,如何解决部分遮挡、类内变化、复杂背景以及视角变化的问题是这类算法的研究重点.近年来,随着部分遮挡、类内变化等问题的逐步解决,越来越多的研究者针对视角问题展开研究.本文对三维目标检测问题进行了较为详细的分析,并且主要针对近几年的热点问题—视角问题展开讨论,介绍并总结了当前该领域的主要算法.通过对比说明了各种方法的优势与不足. 3D Object detection in 3D views is important and fundamental in the computer vision field.Its core issues include coping with the problems of partial occlusion,intra-class variance,cluttered background and multiple views.Most recently,with the development of part-based model,the occlusion and intra-class variance problems have been partly solved.Therefore,researchers have focused their attention mainly on multi-view problem.This paper gives detailed analysis of the 3D object detection problem with emphasis on the recent works related to this problem.At last,we summarize the algorithms introduced and give their comparisons.
出处 《自动化学报》 EI CSCD 北大核心 2012年第4期497-506,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61071135) 教育部博士点基金(20090002110077)资助~~
关键词 三维目标 目标检测 基于部件 几何模型 视角估计 多视角 3D object object detection part-based geometry model pose estimation multi-view
  • 引文网络
  • 相关文献

同被引文献83

  • 1雷小军,付庄,曹其新,赵言正.海底管道检测机器人自主缺陷定位的模糊控制研究[J].机器人,2005,27(3):252-255. 被引量:6
  • 2田原,都东,蔡国瑞,王力,张骅.Automatic Defect Detection in X-Ray Images Using Image Data Fusion[J].Tsinghua Science and Technology,2006,11(6):720-724. 被引量:8
  • 3李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解[J].西南交通大学学报,2007,42(1):19-23. 被引量:21
  • 4Baklm T, Almirall E, Wareham J. A smart city initiative: the case of Barcelona [ J ]. Journal of the Knowledge Economy, 2013, 4(2) : 135-148.
  • 5Zou Y, Shi H, Wang Y, et al. A robust traffic parameter extrac- tion approach for surveillance system at urban intersection[ C ]// Proceedings of the 2nd International Congress on Image and Sig- nal. Tianjin, China : IEEE, 2009 : 1-5.
  • 6Zhu L, Chen Y, Torralba A, et al. Part and appearance sharing: Recursive compositional models for multi-view[ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 1919-1926.
  • 7Lin Z, Hua G, Davis L S. Multiple instance feature for robust part-based object detection[ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, FL, USA: IEEE, 2009: 405-412.
  • 8Ren X, Ramanan D. Histograms of sparse codes for object detection [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 3246-3253.
  • 9Girshick R B, Felzenszwalb P F, Mcallester D A. Object detec- tion with grammar models[ C ]//Proceedings of the 25th Annual Conference on Neural Information Processing Systems. Granada, Spain: MIT Press, 2011 : 442-450.
  • 10Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors[ J ]. International Journal of Computer Vision, 2007, 75(2) : 247-266.

引证文献3

二级引证文献121

;
使用帮助 返回顶部