期刊文献+

一种基于差分演化的K-medoids聚类算法 被引量:11

K-medoids clustering algorithm method based on differential evolution
下载PDF
导出
摘要 针对传统的K-medoids聚类算法具有对初始聚类中心敏感、全局搜索能力差、易陷入局部最优、收敛速度缓慢等缺点,提出一种基于差分演化的K-medoids聚类算法。差分演化是一类基于种群的启发式全局搜索技术,有很强的鲁棒性。将差分演化的全局优化能力用于K-medoids聚类算法,有效地克服了K-medoids聚类算法的缺点,缩短了收敛时间,改善了聚类质量。通过仿真验证了此算法的稳定性和鲁棒性。 The traditional K-medoids clustering algorithm,because on the initial clustering center sensitive,the global search ability is poor,easily trapped into local optimal,slow convergent speed,and so on.Therefore,this paper proposed a kind of K-medoids clustering algorithm based on differential evolution.Differential evolution was a kind of heuristic global search technology population,had strong robustness.It combined with the global optimization ability of differential evolution using K-medoids clustering algorithm,effectively overcame K-medoids clustering algorithm,shortend convergence time,improved clustering quality.Finally,the simulation result shows that the algorithm is verified stability and robustness.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1651-1653,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(11171095,10871031) 湖南省自然科学衡阳联合基金资助项目(10JJ8008) 湖南省科技计划项目(2011FJ3051) 湖南省教育厅重点项目(10A015)
关键词 差分演化 聚类质量 K-medoids算法 全局优化 differential evolution(DE) cluster quality K-medoids algorithm global optimization
  • 相关文献

参考文献11

  • 1SCHOLKOPF B,MIKA S,BURGESC J C,et al.Input space versusfeature space in kernel-based methods[J].IEEE Tran on NeuralNetworks,1999,10(5):1000-1017.
  • 2GUO Hai-xiang,ZHU Ke-jun,GAO Si-wei,et al.An improved geneticK-means algorithm for optimal clustering[C]//Proc of the 6th IEEEInternational Conference on Data Mining Workshops.Washington DC:IEEE Computer Society,2006:793-797.
  • 3STORN R,PRICE K.Minimizng the real functions of the ICEC'96contest by differential evolution[C]//Proc of IEEE International Con-ference on Evolutionary Computation.Nagoya:IEEE,1996:842-844.
  • 4STORN R,PRICE K.Differential evolution:a simple and efficientadaptive scheme for global optimization over continuous spaces[R].Berkeley:University of California,2006:643-689.
  • 5高意,颜宏文.基于差分演化算法的粗糙集属性约简[J].计算机应用,2010,30(9):2329-2331. 被引量:2
  • 6PEI Zhen-kui,YU Hui,ZHAO Yan-Li.Image restoration based ondifferent evolution algorithm[J].Journal of PLA University of Sci-ence and Technology:Natural Science Edition,2010,11(5):489-492.
  • 7LIU jun-hong,LAMPINEN J.A fuzzy adaptive differential evolutionalgorithm[J].Soft Computing,2005,9(6):448-462.
  • 8孙胜,王元珍.基于核的自适应K-Medoid聚类[J].计算机工程与设计,2009,30(3):674-675. 被引量:14
  • 9陶新民,徐晶,杨立标,刘玉.一种改进的粒子群和K均值混合聚类算法[J].电子与信息学报,2010,32(1):92-97. 被引量:79
  • 10苏锦旗,薛惠锋,詹海亮.基于划分的K-均值初始聚类中心优化算法[J].微电子学与计算机,2009,26(1):8-11. 被引量:34

二级参考文献52

共引文献131

同被引文献111

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部