期刊文献+

V/S和Mann-Kendall相结合的方法在洪涝灾情分析中的应用 被引量:8

Application of the combination of V/S and Mann-Kendall method in flood disaster analysis
下载PDF
导出
摘要 【目的】将V/S分析法引入到洪涝灾害面积序列的长记忆性研究,为洪涝灾害的预测和防治提供参考。【方法】以洞庭湖1949-1998年50年的洪涝灾害面积序列为研究对象,采用V/S分析法计算其Hurst指数,并结合其Mann-Kendall趋势分析洪涝灾害面积序列未来的变化趋势。【结果】20世纪70年代以来洞庭湖区的洪灾面积下降趋势明显,90年代以后涝灾面积上升趋势显著,洞庭湖洪涝灾害时间序列V/S分析的Hurst指数均大于0.5,表明洪涝灾害面积序列的变化趋势在未来将持续。【结论】V/S分析是一种有效的趋势预测方法。将V/S分析法与Mann-Kendall相结合的方法能够分析洪涝灾害时间序列未来的变化趋势,是一种有效的未来趋势预测方法。 【Objective】 The flood disaster area series of long memory study which includes V/S analysis method can provide reference to flood disaster prediction and prevention.【Method】 The V/S analysis method calculates the Hurst exponent of floods time series,and analyzes the change tendency characteristic of flood area series with Mann-Kendall in the future.【Result】 The flood area decreased significantly since the 1970s floods in the Dongting Lake area,and the water Logging area was a significant trend of increase after the 1990s.The Hurst exponent of the lake floods t time series is greater than 0.5 by V/S analysis,indicating that the trend of flood and waterlogging disaster series area will continue in the future.【Conclusion】 V/S analysis is a robust effective fractal trend forecast approach.The method of the combination of V/S and Mann-Kendall can anaiyze the future trend characteristic of flood area series,it is a robust effective future trend forecast approach.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2012年第4期230-234,共5页 Journal of Northwest A&F University(Natural Science Edition)
基金 国家重点基础研究发展计划项目(2011CB403306) 水利部公益性行业科研项目专项(201001012 201101043 201101049) 国家科技重大专项(2009ZX0 7212-002-003-004)
关键词 洪涝灾害 V/S分析 MANN-KENDALL HURST指数 变化趋势预测 flood disasters V/S analysis Mann-Kendall Hurst index trend forecast
  • 相关文献

参考文献18

  • 1徐宗学,张楠.黄河流域近50年降水变化趋势分析[J].地理研究,2006,25(1):27-34. 被引量:251
  • 2张建云,章四龙,王金星,李岩.近50年来中国六大流域年际径流变化趋势研究[J].水科学进展,2007,18(2):230-234. 被引量:246
  • 3Hurst H E.Long term storage capacity of reservoirs[J].Transac-tions of the American Society of Civil Engineers,1951,116:770-799.
  • 4Mandelbrot B B,Taqqu M S,Robust R S.Analysis of long runserial correlation[J].Bulletin of the International StatisticalInstitute,1979,49:69-99.
  • 5Peters E E.Fractal market analysis:applying chaos theory toinvestment and economics[M].New York:John Wiley&Sons,Inc,1994.
  • 6Lo A W.Long term memory in stock market prices[J].Econo-metrica,1991,59(5):1279-1313.
  • 7Kwiatkowski D,Phillips P C B,Schmidt P,et al.Testing thenull hypothesis of stationarity against the alternative of a unitroot:how sure are we that economic time series have a unitroot[J].Journal of Econometrics,1992,54(1):159-178.
  • 8Giraitis L,Kokoszka P,Leipus R,et al.Rescaled variance andrelated tests for long memory in volatility and levels[J].Jour-nal of Econometrics,2003,112(2):265-294.
  • 9Cajueiro D O,Tabak B M.The rescaled variance statistic anddetermination of the Hurst exponent[J].Mathematics andComputers in Simulation,2005,70(3):172-179.
  • 10何兴强,李仲飞.上证股市收益的长期记忆:基于V/S的经验分析[J].系统工程理论与实践,2006,26(12):47-54. 被引量:24

二级参考文献106

共引文献609

同被引文献106

引证文献8

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部