期刊文献+

基于非高斯分布的四元数小波图像去噪 被引量:20

Quaternion wavelet image denoising based on non-Gaussian distribution
下载PDF
导出
摘要 图像去噪一直是图像处理的经典问题之一。四元数小波变换是一种新的多尺度分析图像处理工具,图像通过四元数小波变换后的小波系数尺度间具有一定的相关性,而广义高斯分布不能体现这个特性。本文首先采用非高斯二元分布的贝叶斯统计模型来模拟四元数小波系数的统计分布,然后运用最大后验概率估计从带噪声图中的小波系数估计原图的小波系数,从而达到去除噪声的目的。实验表明;该方法不仅可以达到明显的去除噪声的效果,而且在峰值信噪比上也要优于目前的许多算法。 Image denoising is always one of the classical problems of the image processing. Quaternion wavelet transform is a new kind of image processing tool for multi-scale analysis. The image via quaternion wavelet transform, its coefficients in intra-scale have certain correlations, while applying generalized Gaussian distribution cannot reflect the characteristics. First, the non-Gaussian bivariate distribution of Bayesian statistical model is used to simulate the statistical distribution of quaternion wavelet coefficients. Then it uses a maximum posteriori probability from noise image to esti- mate the original image wavelet coefficients, so as to achieve the purpose of denoising. The experiments show that this method can not only get conspicuously denoising result, but also in peak value signal-to-noise ratio be better than many algorithms.
作者 殷明 刘卫
出处 《电子测量与仪器学报》 CSCD 2012年第4期338-343,共6页 Journal of Electronic Measurement and Instrumentation
基金 安徽省自然科学基金资助项目(11040606M06) 安徽省教育厅重点科研项目(KJ2010A282)
关键词 四元数小波变换 图像去噪 贝叶斯统计模型 非高斯二元分布 quaternion wavelet transform(QWT) image de-noising Bayesian statistical mode non-Gaussianbivariate distribution
  • 相关文献

参考文献15

  • 1DONOHO D L. Denoising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613- 627.
  • 2刘金华,佘堃.双树复小波域图像非线性扩散滤波[J].电子测量与仪器学报,2010,24(3):268-273. 被引量:11
  • 3侯涛,汪源源.带预处理的双树复小波医学超声图像去斑[J].仪器仪表学报,2010,31(6):1294-1302. 被引量:14
  • 4黄雨青,王友仁,罗慧,孔德明.分数阶小波包时频域的信号去噪新方法[J].仪器仪表学报,2011,32(7):1534-1539. 被引量:25
  • 5CROUSE M.S, NOWAK R.D, BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 6CORROCHANO E B. Multi-resolution image analysis using the quaternion wavelet transform[J].The Journal of Numerical Algorithms. 2005, 39(1): 35-55.
  • 7CORROCHANO E B. The theory and use of quaternion wavelet transform[J]. The Journal of Mathematical Imaging and Vision. 2006, 24(1): 19-35.
  • 8ZHOU J, XU Y, YANG X K. Quatemion wavelet phase based stereo matching for uncalibrated images[J]. Pattern Recognition Letters, 2007, 28(12): 1509-1522.
  • 9CHO D, BUI T D. Multivariate statistical modeling for image denoising using wavelet transforms[J]. IEEE Transactions on Signal Processing Image Communication, 2005, 20(1): 77-89.
  • 10刘薇,徐凌,杨光.基于双树复小波二元统计模型的图像去噪方法[J].中国图象图形学报,2009,14(7):1291-1297. 被引量:6

二级参考文献52

  • 1赵久奋,任德新,赵玖玲,闫肃.相干斑噪声抑制技术研究[J].仪器仪表学报,2006,27(z2):1413-1416. 被引量:8
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3刘峰.基于小波变换的图像扩散滤波方法[J].中国科学(E辑),2006,36(6):668-677. 被引量:4
  • 4BAO Liang-hua,CHEN Lin-fei,ZHAO Dao-mu.Optical encryption with cascaded fractional wavelet transforms[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(8):1431-1435. 被引量:1
  • 5Donobo D L Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 6Donoho D L,Johnstone L M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistic Association,1995,90(12):1200-1224.
  • 7Crouse M S,Nowak R D,Baraniuk R G.Wavalet-bseed statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,46(4):886-902.
  • 8Chan8 S,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
  • 9Cai T T,Wilverman B W.Incorporating information on neighboring coefficients into wavelet estimation[J].The Indian Journal of Statistics,2001,63(2):127-148.
  • 10Chen G Y,Bui T D.Multiwavelet denoiaing using neighboring coefficients[J].IEEE Tnmsaetions on Signal Processing Letters,2003,10(7):211-214.

共引文献46

同被引文献242

引证文献20

二级引证文献238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部