期刊文献+

Atomic Decomposition and Boundedness Criterion of Operators on Multi-parameter Hardy Spaces of Homogeneous Type 被引量:3

Atomic Decomposition and Boundedness Criterion of Operators on Multi-parameter Hardy Spaces of Homogeneous Type
原文传递
导出
摘要 The main purpose of this paper is to derive a new (p,q)-atomic decomposition on the multi-parameter Hardy space HP(X1 × X2) for 0 〈 po 〈 P ≤ 1 for some po and all 1 〈 q 〈 ∞, where X1 ×X2 is the product of two spaces of homogeneous type in the sense of Coifman and Weiss. This decomposition converges in both L^q(X1 × X2) (for 1 〈 q 〈 ∞) and Hardy space HP(X1× X2) (for 0 〈 p _〈 1). As an application, we prove that an operator T, which is bounded on Lq(X1× X2) for some 1 〈 q 〈 ∞, is bounded from H^p(X1 × X2) to L^p(X1 × X2) if and only if T is bounded uniformly on all (p, q)-product atoms in LP(X1 × X2). The similar boundedness criterion from HP(X1 × X2) to HP(X1 × X2) is also obtained. The main purpose of this paper is to derive a new (p,q)-atomic decomposition on the multi-parameter Hardy space HP(X1 × X2) for 0 〈 po 〈 P ≤ 1 for some po and all 1 〈 q 〈 ∞, where X1 ×X2 is the product of two spaces of homogeneous type in the sense of Coifman and Weiss. This decomposition converges in both L^q(X1 × X2) (for 1 〈 q 〈 ∞) and Hardy space HP(X1× X2) (for 0 〈 p _〈 1). As an application, we prove that an operator T, which is bounded on Lq(X1× X2) for some 1 〈 q 〈 ∞, is bounded from H^p(X1 × X2) to L^p(X1 × X2) if and only if T is bounded uniformly on all (p, q)-product atoms in LP(X1 × X2). The similar boundedness criterion from HP(X1 × X2) to HP(X1 × X2) is also obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第7期1329-1346,共18页 数学学报(英文版)
基金 Supported by U.S. NSF (Grant No. DMS#0901761)
关键词 Atomic decomposition boundedness criterion spaces of homogeneous type multi- parameter Hardy spaces CalderSn's reproducing formula Littlewood Paley theory Journ's covering lemma Atomic decomposition, boundedness criterion, spaces of homogeneous type, multi- parameter Hardy spaces, CalderSn's reproducing formula, Littlewood Paley theory, Journ's covering lemma
  • 相关文献

参考文献1

二级参考文献24

  • 1Gundy, R., Stein, E. M.: HP theory for the polydisk. Proe. Nat. Acad. Sci., 76, 1026-1029 (1979).
  • 2Carleson, L.: A counterexample for measures bounded on Hp for the bidisc. Mittag-Leffler Report No. 7, 1974.
  • 3Fefferman, R., Stein, E. M.: singular integrals on product spaces. Adv. Math., 45, 117-143 (1982).
  • 4Fefferman, R.: Harmonic Analysis on product spaces. Ann. of Math., 126, 109 130 (1987).
  • 5Chang, S-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and H^P theory on product domains. Bull. Amer. Math. Soc., 12, 1-43 (1985).
  • 6Chang, S-Y. A., Fefferman, R.: The Calderon-Zygmund decomposition on product domains. Amer. J. Math., 104, 455-468 (1982).
  • 7Chang, S-Y. A., Feffermanl R.: A continuous version of duality of H^1 with BMO on the bidisc. Ann. of Math., 112, 179-201 (1980).
  • 8Journe, J. L.: Calderon-Zygmund operators on product spaces. Rev. Mat. Iberoamericana., 1, 55-92 (1985).
  • 9Journe, J. L.: Two problems of Calderon-Zygmund theory on product spaces. Ann. Inst. Fourier (Grenoble), 38, 111-132 (1988).
  • 10Pipher, J.: Journe's covering lemma and its extension to higher dimensions. Duke Math. J., 53, 683-690 (1986).

共引文献3

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部