期刊文献+

基于双线性对的可验证的理性秘密共享方案 被引量:12

A Verifiable Rational Secret Sharing Scheme Based on Bilinear Pairing
下载PDF
导出
摘要 针对传统秘密共享方案不能事先预防参与者欺骗的问题,本文结合博弈论,提出了一种理性秘密共享方案,该方案基于双线性对,是可验证的,能检验参与者的欺骗行为.秘密分发者不需要进行秘密份额的分配,因此很大程度上提高了秘密分发的效率.在密钥重构阶段,不需要可信者参与.参与者偏离协议没有遵守协议的收益大,理性的参与者有动机遵守协议,最终每位参与者公平的得到秘密.另外,所提方案可以防止至多m-1成员合谋.经过分析它们是安全和有效的. To correct the problem that traditional secret sharing scheme can not take precautions against cheat,in this paper, we propose a rational secret sharing scheme. The proposed scheme based on bilinear pairing is verifiable and the participants' cheat can not work. The dealer docsn' t need a secret share distribution. Therefore, the scheme greatly improves the efficiency of secret distribution. In addition, the trusted party is eliminated in the secret reconstruction phase. The gain of following the protocol is more than the gain of deviating,so rational player has an incentive to abide by the protocol. FinaUy, every player can obtain the secret fairly.Moreover,the scheme can withstand the conspiracy attack with at most m - 1 players.By analysis, we find the scheme is se- cure and effective.
作者 张恩 蔡永泉
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第5期1050-1054,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61170221) 国家973重点基础研究发展规划(No.2007CB311106) 北京市自然科学基金(No.1102003)
关键词 理性秘密共享 博弈论 双线性对 单向函数 rational secret sharing game theory bilinear pairing one-way function
  • 相关文献

参考文献13

  • 1A Shamir. How to share a secret [ J ]. Communications of the ACM, 1979,22( 1 ) : 612 - 613.
  • 2G R Blakeley. Safeguarding cryptographic keys[ A ]. Proceed- ings of the National Computer Conference [ C ]. New York: AFIPS Press, 1979.313 - 317.
  • 3Chor B, S Goldwasser, S Micali. Verifiable secret sharing and achieving simultaneity in the presence of faults[ A]. Proceedings of the 26th Annual Symposium on Foundations of Computer Science[ C ]. Washington, DC: IEEE Computer Society, 1985. 383 - 395.
  • 4P Feldman. A practical scheme for non-interactive verifiable se- cret sharing [ A ]. Proceedings of the 28th IEEE, Symp. On Foundations of Comp, Science( FOCS 87 ) [ C ]. Los Angeles: IEEE Computer Society, 1987.427 - 437.
  • 5T P Pedersen. DisWibutexl provers with applications to undeni- able signatures [ A ]. Proedings of Eurocrypt 91, Lecture Notes in Computer Science, LNCS 547 [ C ]. Berlin: Springer- Verlag, 1991.221 - 238.
  • 6H Y Lin, L Ham. Fair reconstruction of a secret[ J]. Informa- tion Processing Letters, 1995,55(1) :45 - 47.
  • 7庞辽军,柳毅,王育民.一个有效的(t,n)门限多重秘密共享体制[J].电子学报,2006,34(4):587-589. 被引量:26
  • 8J Halpem, V Teague. Rational secret sharing and multiparty computation[A]. Proceedings of the 36th Annual ACM Sym- posium on Theory of Computing (STOC) [ C ]. New York: ACM Press,2004.623 - 632.
  • 9G Kol,M Naor. Games for exchanging information[ A ]. Pro- ceedings of the 40th Annual ACM Symposium on Theory ofComputing(STOC) [ C ]. New York: ACM Press, 2008. 423 - 432.
  • 10S Maleka,S Amjed,C P Rangan. Rational secret sharing with repeated games[ A]. 4th Information Security Practice and Ex- perience Conference, LNCS 4991 [ C ]. Berlin: Springer-Vet- lag, 2008.334 - 346.

二级参考文献1

共引文献25

同被引文献159

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部