期刊文献+

Periodic Solutions of Mixed Type p-Laplacian Equations with Deviating Arguments 被引量:5

Periodic Solutions of Mixed Type p-Laplacian Equations with Deviating Arguments
下载PDF
导出
摘要 Based on Mansevich-Mawhin continuation theorem and some analysis skill,some sufficient conditions for the existence of periodic solutions for mixed type p-Laplacian equation with deviating arguments are established,which are complement of previously known results. Based on Man'aevich-Mawhin some sufficient conditions for the existence continuation theorem and some analysis skill, of periodic solutions for mixed type p-Laplacian equation with deviating arguments are established, which are complement of previously known results.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第2期177-182,共6页 数学季刊(英文版)
基金 Foundation item: Supported by the Foundation of Education Department of Jiangxi Province(G J J11234) Supported by the Natural Science Foundation of Jiangxi Province(2009GQS0023) Supported by the Natural Science Foundation of Shangrao Normal University(1001)
关键词 P-LAPLACIAN periodic solutions mixed type deviating argument Man’asevichMawhin continuation theorem p-Laplacian periodic solutions mixed type deviating argument Manasevich-Mawhin continuation theorem
  • 相关文献

参考文献10

  • 1TANG Mei-lan, LIU Xin-ge. Periodic solutions for a kind of duffing type p-Laplacian equation[J]. Nonlinear Anal, 2009, 71: 1870-1875.
  • 2CHEUNG W S, REN Jing-lin. On the existence of periodic solutions for p-Laplacian generalized Lifinard equation[J]. Nonlinear Anal, 2005, 60: 65--75.
  • 3XIAO Bing, LIU Bing-wen. Periodic solutions for Rayleigh type p-Laplacian equation with a deviating argument[J]. Nonlinear Anal RW'A, 2009, 10: 16-22.
  • 4ZItONG Ming-gang, LIANG Hong-zhen. Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments[J]. Appl Math Lett, 2007, 20: 43-47.
  • 5WANG Gen-qiang, JAN Ju-rang. On existence of periodic solutions of the Rayleigh equatioa of retarded type[J]. J Math Math Sci, 2000, 23(1): 65-68.
  • 6LU" Shi-ping, GU1 Zhan-jie. On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay[J]. J Math Anal Appl, 2007, 325: 685-702.
  • 7LU Shi-ping. New results on the existence of periodic solutions to a p-Laplacian differential equation with a deviating argument[J]. J Math Anal Appl, 2007, 336: 1107-1123.
  • 8PENG Shi-guo, ZHU Si-ming. Periodic solutions for p-Laplacian Rayleigh equations with a deviating argu- ment[J]. Nonlinear Anal, 2007, 67: 138-146.
  • 9CHEUNG W S, REN Jing-lin. Periodic solutions for p-Laplacian Rayleigh equations[J]. Nonlinear Anal, 2006, 65: 2003-2012.
  • 10MAN.~SEVICH R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. J Differential Equations, 1998, 145: 367-393.

同被引文献71

  • 1QIAN Dingbian & SUN Xiying School of Mathematical Sciences, Suzhou University, Suzhou 215006, China,Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai 200433, China.Invariant tori for asymptotically linear impact oscillators[J].Science China Mathematics,2006,49(5):669-687. 被引量:5
  • 2张正球,庾建设.一类时滞Dufing型方程的周期解[J].高校应用数学学报(A辑),1998,13(4):389-392. 被引量:52
  • 3黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 4PENG Shi-guo.Positive Periodic Solutions for Nonautonomous Differential Equations with Delay[J].Chinese Quarterly Journal of Mathematics,2006,21(4):561-566. 被引量:2
  • 5WANG Gen-qiang, CHENG Sui-sun. A priori bounds for periodic solutions of a delay Rayleigh equation [J]. Applied Mathematics and Computation, 1999, 12(3): 41-44.
  • 6LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of Li6nard equation with a deviating argument [J]. J Math Anal Appl, 2004, 289(1) : 231-243.
  • 7WANG Xiao-ming. New results on periodic solutions for a class of Rayleigh type p-Laplacian equations wity deviating arguments [ J ]. Nonlinear Oscillations, 2012, 15(3): 331-336.
  • 8GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977.
  • 9JIANG Da-qing, WEI Jun-jie. Existence of positive periodic solutions of nonautonomous functional differ?ential equations[J]. Chinese Ann Math A, 1999, 20(6): 715-720.
  • 10CHENG Sui-sun, ZHANG Guang. Existence of positive periodic solutions for nonautonomous functional differential equations[JJ. Election J Differential Equations, 2001, 59: 1-8.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部