期刊文献+

基于量子空间的粒子群算法在图像分割中的应用研究 被引量:2

RESEARCH ON THE APPLICATION OF QUANTUM SPACE BASED PARTICLE SWARM ALGORITHM TO IMAGE SEGMENTATION
下载PDF
导出
摘要 研究图像的空间信息和灰度的图像分割,从中提取感兴趣的目标。传统的粒子群算法后期容易陷入早熟收敛状态,阈值选取时不能保证概率为1时收敛到全局最优解,导致计算时间延长,计算量增大,运算效率较低,抗噪能力差,最终造成分割效果不好。为了提高图像分割效率和分割精度,提出一种基于量子空间的粒子群算法的图像分割算法(QDPSO算法)。该方法通过最优阈值来划分像素,实现图像分割。实验结果表明,与传统的粒子群分割算法相比,该算法不仅得到了更高的分割精度,还大大减少了计算量,能够一定程度上改善图片分割的效率和质量。 By studying an image’s spatial information and grayed image segmentation,interesting targets are extracted from inside.Conventional particle swarm algorithms tend to fall into early mature convergence status.When selecting a threshold value,they can’t promise to converge toward a global optimal resolution at the probability rate of 1.Consequently their calculating time is prolonged,calculating workload is increased,computing efficiency is comparatively low,and noise-resistance capability is weak,in the end producing poor segmentation performances.In order to improve image segmentation efficiency and precision,a quantum space based particle swarm algorithm,as an image segmentation algorithm,named QDPSO algorithm,is proposed.The algorithm takes advantage of the optimal threshold value to partition pixels to realize image segmentation.Experiment results illustrate that,compared with conventional particle swarm segmentation algorithms,the proposed algorithm not only obtains higher segmenting precision,but also significantly decreases calculating workload so as to improve to a certain extent the efficiency and quality of image segmentation.
作者 朱霞
出处 《计算机应用与软件》 CSCD 北大核心 2012年第6期256-259,共4页 Computer Applications and Software
基金 淮安市科技计划项目(SN1045) 淮安市科技局项目(HAG09052)
关键词 量子 粒子群算法 图像分割 Quantum Particle swarm algorithm Image segmentation
  • 相关文献

参考文献8

二级参考文献34

共引文献47

同被引文献18

  • 1Brunelli R. Template matching techniques in computer vision : Theoryand Practice[ M]. Britain: Wiley and Sons,2009.
  • 2Lin D M ,Tsai C T. Fast normalized cross correlation for defect detection[J] . Pattern Recognition 1^6^1^,2003,24(15):2625 -2631.
  • 3Yong S H, Kyoung M IM Sang U L. Robust stereo matching using adap-tive normalized cross-correlation [ J ]. IEEE Transactions on Pattern A-nalysis and Machine Intelligence,2011 ,33(4) :807 -822.
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C ] //Nagoya, Japan : Proceedings of the Sixth International Symposi-um on Micro Machine and Human Science, 1995.
  • 5Kennedy J,Eberhart R. Particle swarm optimization[ C]//Perth, Aus-trali:IEEE International Conference on Neural Network, 1995.
  • 6Glover F. Future paths for integer programming and links to artificial in-telligence[ J]. Computers and Operations Research, 1986,13(5) :533-549.
  • 7鹿艳晶,马苗.基于灰色粒子群优化的快速图像匹配算法[J].计算机工程与应用,2009,45(10):157-159. 被引量:8
  • 8王维真,熊义军,魏开平,何文雅.基于粒子群算法的灰度相关图像匹配技术[J].计算机工程与应用,2010,46(12):169-171. 被引量:14
  • 9张小红,宁红梅.基于混沌粒子群和模糊聚类的图像分割算法[J].计算机应用研究,2011,28(12):4786-4789. 被引量:10
  • 10高金雍,唐红梅,武翠霞,韩力英.一种基于改进PSO和FCM的图像分割算法[J].河北工业大学学报,2011,40(6):6-10. 被引量:5

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部