期刊文献+

硫氰酸生成酶样基因在家蝇高温和重金属镉应激中的作用 被引量:1

Roles of Rhodanese-like Gene in Stress Responses of Musca domestica toward Hyperthermy and Cadmium Tolerance
下载PDF
导出
摘要 硫氰酸生成酶同源结构域普遍存在于古细菌、真细菌以及真核生物的多种蛋白分子内,这些蛋白构成一个功能多样的硫氰酸生成酶超家族。本研究根据家蝇转录组序列信息,分拣到一条硫氰酸生成酶样基因的EST序列,经分析发现其编码蛋白C末端含有典型的硫氰酸生成酶同源结构域,属于硫氰酸生成酶超家族,将其命名为家蝇硫氰酸生成酶样基因(Md-Rhodlike)。应用实时定量RT-PCR技术,分析了Md-Rhodlike在热激、镉胁迫条件下的表达量变化。Md-Rhodlike的mRNA水平在高温和镉处理后上调,提示该基因可能参与家蝇对高温及镉金属等环境胁迫因子的耐受,是一种新的家蝇应激相关蛋白。 The rhodanese homology domain is a ubiquitous fold found in various proteins encoded by eubacterial, archeal, and eukaryotic genomes, which form the pluripotent rhodanese superfamily. In the light of the transcriptomic information of Musca domestica, a rhodanese-like gene EST was identified and referred to as Md-Rhodlike, which encodes a protein of rho- danese superfamily with a representative rhodanese homology domain at the C-terminal end. Expression profiles of Md-Rhod- like in response to heat shock and cadmium stress were detected via real-time quantitative RT-PCR. The mRNA level of Md- Rhodlike was upregulated after heat shock and Cd-exposure. These results indicated that Md-Rhodlike might be a noval stress-resistance-associated protein in Musca domestica, which plays an important role in hyperthermy and cadmium toler- ance.
出处 《四川动物》 CSCD 北大核心 2012年第4期558-563,共6页 Sichuan Journal of Zoology
基金 河北大学自然科学基金项目(2010001) 教育部高等学校博士学科点专项科研基(20101301120005) 河北省自然科学基金项目(C2011201027)
关键词 家蝇 硫氰酸生成酶 热激 重金属镉 应激反应 Musca domestica rhodanese heat shock cadmium stress response
  • 相关文献

参考文献21

  • 1邹宇晓.昆虫应激代谢产物——热休克蛋白及保护酶研究概况[J].广东蚕业,2000,34(1):55-58. 被引量:10
  • 2Adams H, Teertstra W, Koster M, et al. 2002. PspE (phage-shock pro- tein E) of Escherichia coli is a rhodanese[ J]. FEBS Lett, 518 (1-3) : 173 - 176.
  • 3Ayme A, Tissieres A. 1985. Locus 67B of Drosophila melanogaster con- tains seven, not four, closely related heat shock genes[ J]. EMBO J, 4 ( 11 ) : 2949 - 2954.
  • 4Bonomi F, Pagani S, Cerletti P, et al. 1977. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase[J]. Eur J Biochem, 72( 1 ) : 17 -24.
  • 5Bordo D, Bork P. 2002. The rhodanese/Cdc25 phosphatase superfamily. Se- quence-structure-function relations [ J ]. EMBO Rep, 3 (8) : 741 - 746.
  • 6Cereda A, Carpen A, Picariello G, et al. 2009. The lack of rhodanese RhdA affects the sensitivity of Azotobacter vinelandii to oxidative events [J]. Biochemical Journal, 418( 1 ) : 135.
  • 7Cipollone R, Ascenzi P, Frangipani E, et al. 2006. Cyanide detoxifica- tion by recombinant bacterial rhodanese [ J ]. Chemosphere, 63 (6) : 942 - 949.
  • 8Cipollone R, Aseenzi P, Visea P. 2007a. Common themes and variations in the rhodanese superfamily[ J-. IUBMB Life, 59(2) : 51-59.
  • 9Cipollone R, Frangipani E, Tiburzi F, et al. 2007b. Involvement of Pseudomonas aerugirtosa rhodanese in protection from cyanide toxicity [J]. Appl Environ Microbiol, 73(2) : 390 -398.
  • 10Farmer KJ, Sohal RS. 1987. Effects of ambient temperature on free radi- cal generation, antioxidant defenses and life span in the adult housefly, Musca domestica[J]. Exp Gerontol, 22( 1 ) : 59 -65.

共引文献9

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部