期刊文献+

一种运动模糊参数估计算法 被引量:5

A Novel Algorithm of Motion Blur Parameters Estimation
下载PDF
导出
摘要 运动模糊图像恢复的目的是根据估计出的运动模糊参数尽可能还原清晰图像.运动模糊图像的恢复依赖于对运动模糊参数(运动方向Φ和运动长度L)的估计.本文通过分析运动模糊图像的点扩展函数,将频域与空间域的方法相结合,提出了一种改进的运动模糊参数的估计算法.该算法首先采用频域识别算法,利用Radon变换对运动方向Φ进行估计;其次,根据估计出的角度Φ,对图像进行反向旋转,得到方向平行图像;最后,在空间域对平行图像采用自相关法估计运动长度.实验表明:该算法能在各种复杂情况下,准确地估计出运动模糊参数. The purpose of the motion blurred image restoration is to recover the original images as clear as possible according to the estimated motion blur parameters. Restoration of motion blurred image is highly dependent on motion blur parameters estimation,such as motion length (L) and motion direction (Ф). After studying the nature of the degradation function and the point spread function (PSF), the paper presents an improved algorithm to estimate linear motion blur parameters. It originally uses frequency-domain identification method,where Radon transform is used to find motion direction in the frequency domain. After that,image compensation is used to get horizontal image according to the acquired motion direction. Finally,autocorrelation method is used to estimate the motion length in the spatial domain. The results show that this algorithm can accurately estimate the motion blur parameters for images in complex situations.
出处 《兰州交通大学学报》 CAS 2012年第3期116-119,129,共5页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金资助(60962004) 国家自然科学基金(61162016) 甘肃省科技攻关计划基金(0708GKCA047) 甘肃省科技计划(1102RJYA017)
关键词 运动模糊参数 点扩展函数 运动方向 运动长度 motion blur parameters point spread function (PSF) motion direction motion length
  • 引文网络
  • 相关文献

参考文献10

  • 1Cannon M. Blind deconvolution of spatially invariant image blurs with phase[C]//IEEE Trans. Acoust. Speech Signal Process, 1976,24 (1) : 58-63.
  • 2Yitzhaky Y, Kopeika. N. S. Identification of blur pa- rameters from motion blurred images[J]. Graphical models and image processing, 1997,59(5) : 310-320.
  • 3Lokhande R, Arya. K. V,Gupta. P. Identification of pa- rameters and restoration of motion blurred images [C]. prov. of ACM symposium on applied computing, 2006 : 301-305.
  • 4ji H, Liu C Q. Motion blur identification from image gradient[C]. Computer Vision and Pattern Recogni- tion. IEEE, 2008 : 1-8.
  • 5Li Q, Yoshida Y. Parameter estimation and restoration for motion blurred image[C]. IEICE Trans. Fundam. 1997 : 80-88.
  • 6Mohsen Ebrahimi Moghaddam, Mansour Jamzad. Mo- tion blur identification in noisy images using mathe- matical models and statistical measures [J]. Pattern Recongnition. 2007,40(7) : 1946-1957.
  • 7Zhizhong Fu, Haiying Xian, J in Xu, et al. Evaluation of motion blur parameter based on cepstrum domain of the intentional restored image[C]. ZCCP, 2010: 271- 274.
  • 8Hongwei Sun, Michel Desvignes, Yunhui Yan, et al. Motion blur parameters identification from Randon Transform Image Gradients[J]. Industrial Electronics, 2009 : 2098- 2103.
  • 9Wei Wang,Jinjin Zheng,Xing Liu, et al. Adaptive de- tection method of degraded parameters in motion hlur image[C]. Fuzzy Systems and Knowledge Discovery (FSKD), 2011 : 2158-2162.
  • 10Banham M R. Katsaggleos A K. Digital image restora- tion[C]//IEEE Signal Process, 1997,14 (2) .- 24-41.

同被引文献45

  • 1王枚,潘国华,王国宏,尤晶晶.运动和散焦模糊图像的复原方法及其应用研究[J].激光与红外,2007,37(10):1120-1122. 被引量:6
  • 2战荫伟.自然图像抠图方法的研究[D].广州:广东工业大学,2009.
  • 3I. Single Image Motion Deblurring Using Transparency[C]. IEEE. 2007, 1-4244-1180-7.
  • 4Xu Ting-Fa, Zhao Peng. Image motion-blur-basec object's speed measurement using an interlaced scan image[J]. MEASUREMENT SCIENCE AND TECHNOLOGY.] 2010, (21): 075502.
  • 5Dai S, Wu Y. Motion from blur[C]. 2008: 1-8.
  • 6Porter T, DuffT. Compositing digital images[J]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New York, 1984: 253-259.
  • 7LEVIN A, WEISS Y, DURAND F, et al. Efficient marginallikelihood optimization in blind deconvolution[C] / / Proceed-ings of IEEE Conference on Computer Vision and PatternRecognition (CVPR). Providence, RI, 2011: 2657-2664.
  • 8SAEEDI J, MORADI M H, FAEZ K. A new wavelet-basedfuzzy single and multi-channel image denoising[J]. Imageand vision computing, 2010, 28(12): 1611-1623.
  • 9OPPENHEIM A V, SCHAFER R W. From frequency toquefrency: a history of the cepstrum[J]. IEEE signal pro-cessing magazine, 2004, 21(5): 95-106.
  • 10谢伟,秦前清.基于倒频谱的运动模糊图像PSF参数估计[J].武汉大学学报(信息科学版),2008,33(2):128-131. 被引量:32

引证文献5

二级引证文献14

;
使用帮助 返回顶部