摘要
The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combi- nations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y. The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished. By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated. Using GFP fusion constructs, NF-YA and NF-YC localization in the nucleus was demonstrated, while NF- YB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC. This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms. Based on a peptide structure model of the histone-fold-motifs, disulfide bonding among intramolecular conserved cysteine residues of NF-YB, which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans, can be excluded for Arabidopsis NF-YB.
The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combi- nations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y. The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished. By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated. Using GFP fusion constructs, NF-YA and NF-YC localization in the nucleus was demonstrated, while NF- YB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC. This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms. Based on a peptide structure model of the histone-fold-motifs, disulfide bonding among intramolecular conserved cysteine residues of NF-YB, which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans, can be excluded for Arabidopsis NF-YB.