期刊文献+

自洽场理论研究嵌段聚合物的并行算法实现 被引量:1

Parallel Implementation of the Self-Consistent Mean Field Theory on Copolymer Research
下载PDF
导出
摘要 自洽场理论的数值计算方法在聚合物热力学的研究中得到了广泛的应用,尤其应用在嵌段共聚物微相分离形态的预测和描述方面[1~6]。该理论方法灵活性较强,参数空间的调整范围较大,能应用的计算体系也变化多样,难以建立固定的既有软件包,现有文献也鲜见针对该理论算法并行化的研究。本文就该理论在嵌段共聚物自组装问题上的数值计算的并行算法实现进行了研究和讨论,给出了算法性能的理论分析,并进行了实验测试。测试结果显示,本文提出的并行算法可获得良好的并行加速比,并行效率较高。该算法的提出有助于推动包括针对聚合物在内的软物质理论的研究工作。 Self consistent Mean Field Theory (SCFT) has been applied widely in polymer thermodynamics,and especially achieves progress in copolymer's micro phases research. This is a flexible theory. It's parameter space has a wide setting range, and various application samples can be used under this theory. So it is difficult to build a steady software package,and also rare reference regarding the par allel implement about this theory. This article focuses on the parallel implementations of the copolymer self-assembly application. The performance is theoretically analyzed,and the experimental results show that our algorithm has good parallel performance and scalability. This algorithm is also helpful to the theoretical research of polymer and the soft matter field.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第8期108-113,共6页 Computer Engineering & Science
基金 国家863计划资助项目(2012AA01A308)
关键词 自洽场理论 嵌段共聚物 自组装 并行算法实现 SCFT copolymer self-assembly parallel implementation
  • 引文网络
  • 相关文献

参考文献13

  • 1Kou D Z, Jiang Y, Liang H J. Microstructures from a Mix- ture of ABC 3-Miktoarm Star Terpolymers and Homopoly mers in Two-Dimensional Space [J]. Journal of Physical Chemistry B, 2006, 110(46) :23557 2356.3.
  • 2Tyler C A, Qin J, Bates F S, et al. SCFT Study of Nonfrus trated ABC Triblock Copolymer Melts[J]. Macromoleeules, 2007, 40(13) :4654- 4668.
  • 3Chen P, Liang H J, Shi A C. Microstructures of a Cylinder- Forming Diblock Copolymer under Spherical Confinement [J]. Macromolecules, 2008, 41(22):8938-8943.
  • 4Yang G, Tang P, Yang Y L. Self Assembly of AB Diblock Copolymers under Confinement into Topographically Pat terned Surfaces[J]. Journal of Physical Chemistry B, 2009, 113(43) : 14052-14061.
  • 5Tong C H, Zhu Y J, Zhang H D. The Self-Consistent Field Study of the Adsorption of Flexible Polyeleetrolytes onto Two Charged Nano-objects[J]. Journal of Physical Chemis try B, 2011, 115(39):11307 11317.
  • 6Qu L J, Man X K, Han C C, et al. Responsive Behaviors of Dibloek Polyampholyte Brushes within SelgConsistent Field Theory[J]. Journal of Physical Chemistry B, 2012, 116(2) 743-750.
  • 7Helfand E. Theory of Inhomogeneous Polymers-Fundamen- tals of Gaussian Random Walk Model[J]. Journal of Chemi- cal Physics, 1975, 62(3) :999-1005.
  • 8Whitmore M D, Noolandi J. Theory of Phase Equilibria in Block Copolymer Homopolymer Blends[J}. Macromolecules, 1985, 18(12):2486-2497.
  • 9Matsen M W, Sehick M. Stable and Unstable Phases of a Dihloek Copolymer Melt[J].Physical Review l.etters, 1994, 72(16):2660- 2663.
  • 10Drolet F, Fredrickson G H. Combinatorial Screening of Com- plex Block Copolymer Assembly with SelbConsistent Field The ory[J].Physical Review Letters, 1999, 83(21) :4317- 4320.

同被引文献7

  • 1孙喆,宋海华.表面接枝二分散聚合物的自洽场理论[J].化工学报,2006,57(4):975-980. 被引量:2
  • 2Biesheuvel P M,De Vos W M,Amoskov V M.Semianalytical continuum model for nondilute neutral and charged brushes including finite stretching[J].Macromolecule,2008,41(16):6254-6259.
  • 3Zhulina E B,Klein J,Wolterink,et al.Screening effects in a polyelectrolyte brush:self-consistent-field theory[J].Macromolecules,2000,33(13):4945-4953.
  • 4Yan D D,Suo T C,Zhang X H,et al.Self-consistent field theory and its applications in polymer systems[J].Front Chem China,2011,6(4):310-331.
  • 5He S Z,Merlitz H,Chen L,et al.Polyelectrolyte brushes:MD simulation and SCF theory[J].Macromolecules,2010,43:7845-7851.
  • 6Chen L,Merlitz H,He S Z,et al.Polyelectrolyte brushes:debye approximation and mean-field theory[J].Macromolecules,2011,44:3109-3116.
  • 7何素贞.带电聚合物刷的分子动力学模拟和研究[J].莆田学院学报,2009,16(5):86-89. 被引量:2

引证文献1

;
使用帮助 返回顶部