期刊文献+

General Structures of Block Based Interpolational Function 被引量:1

General Structures of Block Based Interpolational Function
下载PDF
导出
摘要 We construct general structures of one and two variable interpolation function, without depending on the existence of divided difference or inverse differences, and we also discuss the block based osculatory interpolation in one variable case. Clearly, our method offers marly flexible interpolation schemes for choices. Error terms for the interpolation are determined and numerical examples are given to show the effectlveness of the results. We construct general structures of one and two variable interpolation function, without depending on the existence of divided difference or inverse differences, and we also discuss the block based osculatory interpolation in one variable case. Clearly, our method offers marly flexible interpolation schemes for choices. Error terms for the interpolation are determined and numerical examples are given to show the effectlveness of the results.
作者 Zou LE TANG SHUO
出处 《Communications in Mathematical Research》 CSCD 2012年第3期193-208,共16页 数学研究通讯(英文版)
基金 The Grant (11RC05) of Scienti/fic Research Foundation for Talents of Hefei University the Grant (11KY06ZR) of Scientific Research Foundation Hefei University the Key Project Foundation (KJ2008A027) of the Department of Education of Anhui Province the Project Foundation (KJ2010B182,KJ2011B152, KJ2011B137) of the Department of Education of Anhui Province
关键词 osculatory interpolation continued fractions interpolation blendingrational interpolation block based interpolation osculatory interpolation, continued fractions interpolation, blendingrational interpolation, block based interpolation
  • 相关文献

参考文献5

二级参考文献11

  • 1TAN JIEQING AND TANG SHUO.VECTOR VALUED RATIONAL INTERPOLANTS BY TRIPLE BRANCHED CONTINUED FRACTIONS[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(1):99-108. 被引量:8
  • 2Qian-jin Zhao,Jie-qing Tan.BLOCK BASED NEWTON-LIKE BLENDING INTERPOLATION[J].Journal of Computational Mathematics,2006,24(4):515-526. 被引量:18
  • 3WANG Ren-hong. Numerical Approximation[M]. Beijing: Higher Education Press, 1999.
  • 4VOZNA S M. On the convergence of the continued J-fraction[J]. Mat Met Fiz Meh Polya, 2004, 47: 22-29.
  • 5VOZNA S M, KUCHMINS'KA KH I. An approximated formula in the form of an associated continued fractions[J]. Math Met Phy Math Fie, 2007, 51: 1-9.
  • 6VOZNA S M. newton-tile-type interpolational formula in the form of two-dimensional continued fraction with non-equivalent variables[J]. Mat Met Fiz Meh Polya, 2004, 47: 67-72.
  • 7ZHU Xiao-lin, ZHU Gong-qin. A note on matrix-valued rational interpolations[J]. J Comp Appl Math, 1999, 110: 129-140.
  • 8Shuo Tang Yan Liang.Bivariate Blending Thiele-Werner's Osculatory Rational Interpolation[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2007,16(3):271-288. 被引量:1
  • 9王仁宏,数值有理逼近,1980年
  • 10Kh. I. Kuchmins’ka,O. M. Sus’,S. M. Vozna. Approximation Properties of Two-Dimensional Continued Fractions[J] 2003,Ukrainian Mathematical Journal(1):36~54

共引文献49

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部