期刊文献+

基于类集和类对的有监督流形学习的肺结节分类

Lung Nodule Classification Using Supervised Manifold Learning Based on All-Class and Pairwise-Class Feature Extraction
下载PDF
导出
摘要 维数简约是肺结节分类识别问题中的关键步骤,现有的方法中都是将所有类别的数据作为一个整体进行降维,忽略了不同类别数据之间在特征子集上的差异性。本文提出了一种将类集和类对相结合的有监督流形特征抽取思想,并将之应用于肺结节的分类中,最终形成一个基于CT影像的肺结节分类系统。实验结果表明了方法的有效性。 Dimensionality reduction plays an important role in lung nodule classification,but in most of the existing methods,dimensionality is reduced with all classes being considered jointly,difference between feature subsets of different classes is ignored.In this paper,a supervised manifold feature extraction method based on fusion of all-class and pairwise-class is proposed,and an supervised multi-classifiers system of lung nodule classification is constructed.Experiments show a significant improvement in recognition accuracy.
作者 李缨 于谦
出处 《科技通报》 北大核心 2012年第8期29-32,共4页 Bulletin of Science and Technology
基金 山东省自然科学基金(ZR2011FL005)
关键词 肺结节 类集 类对 流形学习 特征抽取 lung nodule all-class pairwise-class feature extraction manifold learning
  • 相关文献

参考文献4

  • 1M Aoyama, Q Li, S Katsuragawa, F Li, S Sone and K Doi. Computerized scheme for determination of the like- lihood measure of malignancy for pulmonary nodules on low-dose CT images[J], Medical Physics, 2003,30:387 - 394.
  • 2H MacMahon, J H M Austin, G Gamsu, et al. Guidelines for management of small pulmonary nodules detected on CT scans: A statement from the fleischner society[J].Radi- ology, 2005,237:395 - 400.
  • 3Geng Xin, Zhan De-chuan, Zhou Zhi-hua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification[J]. IEEE Transactions on Systems, 2005, 35 (6): 1098-1107.
  • 4张石清,李乐民,赵知劲.基于一种改进的监督流形学习算法的语音情感识别[J].电子与信息学报,2010,32(11):2724-2729. 被引量:21

二级参考文献2

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部