期刊文献+

分数Maxwell模型在高密度聚乙烯蠕变中的应用

Application of fractional Maxwell model to creep of high-density polyethylene
下载PDF
导出
摘要 基于分数Maxwell模型对高密度聚乙烯在不同应力水平和老化时间下的蠕变曲线进行拟合.用遗传算法结合共轭梯度法对模型参数进行优化,当以模型参数松弛时间作为时间标度时,同一应力水平下不同老化时间的蠕变曲线能很好地叠合,即时间-老化时间叠加原理自然满足. The creep curves of high-density polyethylene at different stress levels and aging time were using generalized fractional Maxwell model. Genetic algorithm and conjugated gradient method employed to optimize the model parameters. When the time was scaled by the relaxation time, the curves at the same stress levels and different aging time can superpose very well. It means that the fitted were creep timeaging time superposition is naturally satisfied.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第5期32-35,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11164024)
关键词 分数Maxwell模型 高密度聚乙烯 蠕变柔量 叠加原理 fractional Maxwell model high-density polyethylene creep compliance superposition principle
  • 相关文献

参考文献14

  • 1STRUIK L C E. The mechanical and physical agingof semicrystalline polymers: 1 [J]. Polymer, 1987, 28(9): 1521-1533.
  • 2SURGULADZE T Z. On certain applications of fractional calculus to viscoelasticity[J]. J Math Sci, 2002, 112(5).. 4517-4557.
  • 3徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 4WARD I M. Mechanical Properties of Solid Polymers[M]. Chiehester.. wiley, 1983.
  • 5TSCHOEGL N W. The Phenomenological Theory of Linear Viscoelcstic Behavior [ M ]. Berlin: Springer, 1989.
  • 6OLDHAM K B, SPANIER J. The Fractional Calculus[M]. New York Academic Press, 1974.
  • 7MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York.. John Wiley Sons, 1993.
  • 8KOLLER R C. Applications of fractional calculus to the theory of visoelastity[J]. J Appl Mech, 1984, 51: 299-307.
  • 9KOELLER R C. Polynomial operators, stieltjes convolution and fractional calculus in hereditary mechanics[J]. J Acta Mech, 1986, 58: 251-264.
  • 10SCHIESSEL H, METZLER R, BLUMEN A. Generalized viscoelastic models: their fractional equations with solutions[J]. J Phys Chem, 1995, A28: 6567-6584.

二级参考文献37

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部