期刊文献+

基于中空氧化镍纳米微球和离子液体复合膜固定血红蛋白的NaNO_2生物传感器 被引量:3

NaNO2 Biosensor Based on Hollow Nano-nickel Oxide Microsphere and Ionic Liquid Composite Film Immobilizing Hemoglobin
下载PDF
导出
摘要 采用微波水热法合成了一种中空氧化镍纳米微球(NiO),然后将其与1-丁基-3-甲基-咪唑四氟硼酸盐(BMIMBF4)的复合膜用于血红蛋白(Hb)在碳糊电极上的固定,制备了NaNO2生物传感器.通过扫描电子显微镜、傅里叶变换红外光谱及紫外-可见光谱等分析表明,Hb已固定于NiO和BMIMBF4的复合膜中并能保持其生物活性;进一步通过电化学阻抗法研究了修饰电极中混合物各组分的作用.结果表明,在NiO和BMIMBF4的复合膜中,Hb能实现有效的直接电子转移,且修饰后的电极对NaNO2有良好响应,响应时间小于5 s,检出限为4.57μmol/L(S/N=3),灵敏度为46.2μA.L.mmol-1,线性范围为10~170μmol/L,表观米氏常数KM为2.4 mmol/L,该方法的重现性和电极的稳定性良好. Hollow nano-nickel oxide microsphere (NiO) was fabricated by microwave hydrothermal process and characterized by SEM. The prepared NiO was used to immobilize hemoglobin (Hb) on the surface of the carbon paste electrode with 1-butyl-3-methylimidazolium tetrafluoroborate( BMIMBF4 ). The structure of Hb in the composite film was still maintained native-like demonstrated by FTIR spectra and UV-visible spectra. Moreover, the functions of different components in the modified electrode were studied by electrochemical im- pedance spectroscopy. A pair of stable and quasi-reversible redox peaks was observed in phosphate buffer solution which indicating that heme-proteins could achieve its direct electron transfer effectively. The modified electrode displayed an excellent and rapid electrocatalytic response to the oxidation of NaNO2. The proposed biosensor exhibited a good linear response to the concentration of NaNO2 in the range of 10-170 p, mol/L, with a detection limit of 4. 57 p, mol/L( S/N = 3 ). The apparent Michaelis-Menten constant was estimated to be 2.4 mmol/L. Furthermore, the biosensor possesses satisfactory stability and good reproducibility.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第9期1926-1931,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50830303) 长江学者与创新团队发展计划(批准号:IRT0853) 西安建筑科技大学重大科技成果创新基金(批准号:ZC1004)资助
关键词 中空氧化镍纳米微球 血红蛋白 直接电化学 亚硝酸钠 生物传感器 Hollow nano-nickel oxide microsphere Hemoglobin Direct electron transfer NAN02 Biosensor
  • 相关文献

参考文献24

  • 1HuangY. G., JiJ. D., HouQ. N.. Mutat. Res.[J], 1996, 358(1):7-14.
  • 2Lijinsky W. , Epstein S.S.. Nature[J] , 1970, 5227 (225) : 3-21.
  • 3Kamyabi M. A., Aghajanloo F.. J. Electroanal. Chem. [J], 2008, 614(1/2):157-165.
  • 4Ensafi A. A. , Saminifar M.. Talanta[J] , 1993, 40(9) : 1357-1378.
  • 5Hertz J. , Baltensperger U.. Anal. Chem. [J] , 1984, 318(2) : 121-123.
  • 6周玲,王明华,王剑平,叶尊忠.传感器表面的适配体固定方法及其在生物传感器中的研究进展[J].分析化学,2011,39(3):432-438. 被引量:11
  • 7Wen Z. H. , Kang T. F.. Talanta[J] , 2004, 62(2) : 351-355.
  • 8Lu L. P., Wang S. Q., Kang T. F., Xu W. W.. Microchim. Acta[J]. 2008, 162(1/2): 81-85.
  • 9ZhaoG. Y., XuC. L., LiH. L.. Mater. Lett.[J], 2008,62(10/11'): 1663-1665.
  • 10Zheng D. Y. , Hu C. G. , Peng Y. F. , Hu S. S.. Electrochimica Acta[J] , 2009, 54(21) : 4910-4915.

二级参考文献141

  • 1姜秀娥,张哲泠,黄卫民,刘小强,汪尔康,董绍俊.现场紫外光谱及圆二色谱研究电化学还原反应诱导微过氧化物酶-11构象的转变[J].高等学校化学学报,2005,26(2):321-325. 被引量:1
  • 2蒋雪松,王剑平,应义斌,李延斌.用于食品安全检测的生物传感器的研究进展[J].农业工程学报,2007,23(5):272-277. 被引量:55
  • 3Chakraborty B, Jiang Z F, Li Y C, Yu H Z. Journal of Electroanalytical Chemistry, 2009, 635(2): 75-82.
  • 4Zhang Y L, Huang Y, Jiang J H, Shen G L, Yu R Q. J, Am. Chem. Soc., 2007, 129(50): 15448-15449.
  • 5Han K, Chen L, Lin Z S, Li G S. Electrochemistry Communications, 2009, 11(1):157-160.
  • 6Ogasawara D, Hachiya N S, Kaneko K, Sode K, Ikebukuro K. Biosensors and Bioelectronics, 2009, 24(5): 1372-1376.
  • 7LiuZM, LiZJ, ShenJ L, YuR Q. Electroanalysis, 2009, 21(16): 1781-1785.
  • 8LiuXR, LiY, ZhengJ B,ZhangJ C, Sheng Q L. Talanta, 2010, 81(4 5):1619-1624.
  • 9Cho H S, Baker B R, Wachsmann-Hogiu S, Pagba C V, Laurence T A, Lane S M, Lee L P, Tok J. Nano. Lett. , 2008, 8(12): 4386-4390.
  • 10WangG Q, ChenLX. Chinese Chemical Letters, 2009, 20(12): 1475-1477.

共引文献24

同被引文献28

  • 1孙景,胡胜亮,杜希文,雷贻文,江雷.毫秒脉冲激光合成超细纳米金刚石[J].物理化学学报,2007,23(7):1105-1108. 被引量:5
  • 2Larsen L H, Damgaard L R,Kjaer T, et al. Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge [J]. Water Research, 2000, 34 (9): 2463-2468.
  • 3Silva S D, Costlier S, Almeida M G, et al. An efficient poly(pyrrole-viologen)-nitrite reductase biosensor for the mediated detection of nitrite [J]. Electrochemistry Communications, 2004, 6(4): 404-408.
  • 4Chen H, Mousty C, Cosnier S,et al. Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH [J]. Electrochemistry Communications, 2007,9(9): 2240-2245.
  • 5Radhakrishnan S,Krishnamoorthy K, Sekar C, et al. A highly sensitive electrochemical sensor for nitrite detection based on Fe203 nanoparticles decorated reduced graphene oxide nanosheets [J]. Applied Catalysis B: Environmental, 2014,148: 22-28.
  • 6Li Y H, Wang H B,Liu X S,et al. Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liq uid composite electrode [J]. Journal of Electroanalytical Chemistry, 2014, 719: 35-40.
  • 7Ma M,Xie J,Zhang Y,et al. Fe304@Pt nanoparticles with enhanced peroxidase-like catalytic activity [J]. Materials Letters, 2013, 105: 36-39.
  • 8Wei Y,Yin G F, Ma C Y, et al. Synthesis and cellular compatibility of biomineralized Fe304 nanoparticles in tumor cells targeting peptides [J]. Colloids and SurfacesB: Biointerfaces, 2013,107: 180-188.
  • 9Mani V,Periasamy A P, Chen S M. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode [J]. Electrochemistry Communications, 2012,17: 75-78.
  • 10Li S J, Zhao G Y, Zhang R X,et al. A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene[J]. Microchim Acta, 2013,180(9/10): 821-827.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部