期刊文献+

SOC estimation of lithium-ion power battery for HEV based on advanced wavelet neural network 被引量:3

基于先进小波神经网络的HEV动力锂离子电池SOC估计(英文)
下载PDF
导出
摘要 In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods. 为了提高混合动力汽车(HEV)电池荷电状态(SOC)的估计精度,提出了一种基于先进小波神经网络的HEV动力电池SOC估计算法.首先,建立了基于先进小波神经网络的电池SOC估计模型.然后,通过数学推导证明了先进小波神经网络的收敛性.最后,利用大量HEV动力电池在行驶过程中充放电的数据样本,对神经网络进行网络训练.仿真结果表明,所提出的估计算法与传统SOC估计算法相比,提高了电池SOC的估计精度,有效地将估计误差从±8%减小到±1.5%.
作者 付主木 赵瑞
出处 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期299-304,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China (No.60904023)
关键词 wavelet neural network state of charge(SOC) hybrid electric vehicle lithium-ion power battery 小波神经网络 荷电状态 混合动力汽车 动力锂离子电池
  • 相关文献

参考文献13

  • 1Shin D H, Song H S, Kim H J. Advanced hybrid energy storage system for mild hybrid electric vehicles [ J]. Inter- national Journal of Automotive Technology, 2011, 12( 1): 125 - 130.
  • 2Van De Ville D. The pairing of a wavelet basis with a mildly redundant analysis via subband regression [ J]. IEEE Transactions on Image Processing, 2008, 17( 11): 2040 - 2052.
  • 3Malhi A, Yan R. Prognosis of defect propagation based on recurrent neural networks [ J]. 1EEE Transactions on Instrumentation and Measurement, 2011, 60 (3) : 703 - 711.
  • 4He H, Xiong R, Zhang X. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model [ J]. IEEE Transactions on Vehicular Technology, 2011, 60 (4) : 1461 - 1469.
  • 5Li I, Wang W, Lee Y. A merged fuzzy neural network and its applications in battery state-of-charge estimation [ J]. IEEE Transactions on Energy Conversion, 2007, 22 (3): 697-708.
  • 6Lee Y, Wang W, Kuo T. Soft computing for battery state-of-charge (BSOC) estimation in battery string sys- tems [ J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 229-239.
  • 7Cheng K W E, Divakar B P. Battery-management system (BMS) and SOC development for electrical vehicles [ J]. IEEE Transactions on Vehicular Technology, 2011, 60 (1): 76-88.
  • 8Cao J, Emadi A. Batteries need electronics: battery man- agement systems vary according to chemistry and applica- tions [J]. IEEE Industrial Electronics Magazine, 2011, 5 (1): 27-35.
  • 9Manenti A, Merati A, Savaresi S M. A new BMS archi- tecture based on cell redundancy [ J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4314-4322.
  • 10Sousy F M. Robust wavelet-neural-network sliding mode control system for permanent magnet synchronous motor drive [ J]. Electric Power Applications, 2011, 5(1) : 113 - 132.

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部