期刊文献+

GENERALIZATIONS OF THE SUZUKI AND KANNAN FIXED POINT THEOREMS IN G-CONE METRIC SPACES 被引量:1

GENERALIZATIONS OF THE SUZUKI AND KANNAN FIXED POINT THEOREMS IN G-CONE METRIC SPACES
下载PDF
导出
摘要 In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces. In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.
出处 《Analysis in Theory and Applications》 2012年第3期248-262,共15页 分析理论与应用(英文刊)
关键词 fixed point D-metric space 2-metric space generalized cone metric space Kannan mapping generalized Kannan mapping contractive mapping fixed point, D-metric space, 2-metric space, generalized cone metric space,Kannan mapping, generalized Kannan mapping, contractive mapping
  • 相关文献

参考文献9

  • 1Banach, S. Sur Les Operations Dans Les Ensembles Abstraits et Leur Application Aux Equations Integrales, Fund. Math., 3(1922), 133-181.
  • 2Beg, I., Abbas, M. and Nazir, T., Generalized Cone Metric Spaces, J. Nonlinear Sci. Appl., 3:1(2010), 21-31.
  • 3Dhage, B. C., Generalized Metric Space and Mapping with Fixed Point, Bull. Calcutta. Math. Soc., 84(1992), 329-336.
  • 4Gahler, S., 2-Metriche Raume Und Ihre Topologische Strukture, Math. Nachr., 26(1963), 115-148.
  • 5Huang, L. G. and Zhang, X., Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
  • 6Kikkawa, M. and Suzuki, T., Some Similarity Between Contractions and Kannan Mappings, Fixed Point Theory and Applications, dio: 10.1155/2008/649749.
  • 7Mustafa, Z. and Sims, B., A New Approach to Generalized Metric Spaces, Journal of Nonlinear and Convex Analysis, 7:2(2006 ), 289-297.
  • 8Rezapour, Sh. and Hamlbarani, R., Some Notes on the Paper "Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings", J. Math. Anal. Appl., 345:2 (2008), 719-724.
  • 9Suzuki, T., A Generalized Banach Contraction Principle which Characterizes Metric Completeness, Proc. Amer. Math. Soc., 136:5 (2008) 1861-1869.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部