期刊文献+

基于中国剩余定理的可验证理性秘密共享方案 被引量:5

Verifiable rational secret sharing scheme based on Chinese remainder theorem
下载PDF
导出
摘要 针对目前理性秘密共享方案不能动态添加和删除参与者的问题,结合博弈论和密码学理论,提出一种动态理性秘密共享方案。方案基于中国剩余定理,在秘密重构过程,可以动态添加和删除参与者,另外方案采用可验证的随机函数,能检验参与者的欺骗行为。参与者不知当前轮是否是测试轮,偏离协议没有遵守协议的收益大,理性的参与者有动机遵守协议,最终每位参与者公平地得到秘密。方案不需要可信者参与,满足弹性均衡,能防止成员间的合谋攻击。 To address the problem that participant can not be added or deleted dynamically in rational secret sharing scheme so far,this paper proposed a dynamic rational secret sharing scheme which combined game theory with cryptography.The scheme based on Chinese remainder theorem,can add or delete the participant dynamically in the secret reconstruction phase.And it is verifiable by using the verifiable random function,and the cheat of participants cannot work.The participants did not know whether the current round was a testing round.And the gain of following the protocol was more than the gain of deviating,so rational player had an incentive to abide the protocol.Finally,every player could obtain the secret fairly.In addition,the scheme satisfied resilient equilibrium and could withstand the conspiracy attack.
作者 张利远 张恩
出处 《计算机应用》 CSCD 北大核心 2012年第11期3143-3146,共4页 journal of Computer Applications
基金 河南省政府决策研究招标课题(2012B350)
关键词 理性秘密共享 博弈论 中国剩余定理 可验证随机函数 rational secret sharing game theory Chinese remainder theorem verifiable random function
  • 相关文献

参考文献17

  • 1SHAMIR A. How to share a secret [ J]. Communications of the ACM, 1979,22(11): 612-613.
  • 2BLAKELEY G R. Safeguarding eryptographic keys[ C]// Proceedings of the National Computer Conference. New York: AFIPS Press, 1979:313 -317.
  • 3CHOR B, GOLDWASSER S, M1CALI S. Verifiable secret sharing and achieving simultaneity in the presence of faults[ C]//26th Annual Symposium on Foundations of Computer Science. Washington, DC: IEEE Computer Society, 1985:383 -395.
  • 4FELDMAN P. A practical scheme for non-interactive verifiable secret sharing[ C]//FOCS' 87 : 28th IEEE Symposium on Foundations of Comp, Science. Washington, DC: IEEE Computer Society, 1987:427-437.
  • 5PEDERSEN T P. Distributed provers with applications to undeniable signatures[ C]// Proceedings of Eurocrypt' 91, LNCS 547. Berlin: Springer, 1991:221-238.
  • 6LIN H Y, HARN L. Fair reconstruction of a secret[ J]. Information Processing Letters, 1995, $$(1): d$-47.
  • 7HALPERN J, TEAGUE V. Rational secret sharing and multiparty computation[ C]//Proceedings of the 36th Annum ACM Symposium on Theory of Computing. New York : ACM, 2004:623 -632.
  • 8KOL G, NAOR M. Cryptography and game theory: Designing protocols for exchanging information[ C]//Proceedings of the 5th Theory of Cryptography Conference. Berlin: Springer, 2008:317-336.
  • 9MALEKA S, AMJED S, RANGAN C P. Rational secret sharing with repeated games[ C]//4th Information Security Practice and Experience Conference, LNCS 4991. Berlin: Springer, 2008:334-346.
  • 10MALEKA S, AMJED S, RANGAN C P. The deterministic protocol for rational secret sharing[ C]//the 22 th IEEE International Parallel and Distributed Processing Symposium. Washington, DC: IEEE Computer Society, 2008:3651-3657.

同被引文献46

  • 1顾梅花,张太镒,王瑞.基于S3C4510B的MPEG-4视频解码器的优化与实现[J].西安工程科技学院学报,2006,20(1):79-83. 被引量:2
  • 2HE J, DAWSON E. Multi-stage secret sharing scheme based on one- way function [ J]. Electronic Letters, 1994, 30(19) : 1591 - 1594.
  • 3SHAMIR A. How to share a secret[ J]. Communications of the ACM, 1979,22 (11):612-613.
  • 4HARN L. Comment: multistage secret sharing scheme based on one- way function [ J]. Electronic Letters, 1995, 31 (4) : 262 - 262.
  • 5HE J, DAWSON E. Multisecret sharing scheme based on one-way function[ J]. Electronic Letters, 1995, 31 (2) : 93 - 95.
  • 6CHANG T, HWANG M, YANG W. A new multi-stage secret sharingscheme using one-way function[ J]. ACM SIGOPS Operating Systems Review, 2005, 39(1) : 48 - 55.
  • 7CHOR B, GOLDWASSER S, MICALI S, et al. Verifiable secret sha- ring and achieving simultaneity in the presence of faults [ C]// SFCS '85: Proceedings of the 26th Annual Symposium on Founda- tions of Computer Science. Washington, DC: IEEE Computer Socie- ty, 1985:383 -395.
  • 8HARN L. Efficient sharing(broadcasting) of multiple secret[ J]. Computer and Digitial Techniques, 2005, 152(3) : 237 - 240.
  • 9LINT Y, WU T C. ( t, n) threshold verifiable multi-secret sharing scheme based on factorization intractability and discrete logarithm modulo a composite problem [ J]. Computer and Digitial Tech- niques, 2009, 156(5) : 264 - 268.
  • 10HE W H, WU T S. Comment on Lin-Wu ( t, n) -threshold verifiable multi-secret sharing scheme[ J]. Computer and Digitial Techniques, 2011, 158(3) : 139.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部