期刊文献+

基于特征融合的多节点调制识别方法 被引量:1

Modulation classification algorithm of multinodes based on features fusion
下载PDF
导出
摘要 针对传感器网络节点的分布式结构,给出了基于特征融合的多节点联合调制识别方法。首先利用似然比推导了特征融合的联合识别准则;然后依据准则给出了多节点调制识别的仿真性能;最后和基于决策融合的多节点调制识别方法进行了比较。仿真结果表明,在没有过多增加网络通信负载的情况下,特征融合相比决策融合提高了识别性能。 This paper proposed a modulation recognition algorithm of multinodes based on features fusion for the distributed structure of wireless sensor network nodes.Firstly,derived combining classification criterion of features fusion by using likelihood ratio.Then,presented the simulation performances under the criterion.Finally,it proposed the performance comparation of features fusion and decisions fusion.In the not too much increase network communication load,the features fusion algorithm has a better performance.
出处 《计算机应用研究》 CSCD 北大核心 2012年第10期3935-3937,共3页 Application Research of Computers
基金 国家科技重大专项资助项目(2010ZX03006-002)
关键词 传感器网络 分布式结构 调制识别 似然比 特征融合 wireless sensor network distributed structure modulation classification likelihood ratio features fusion
  • 相关文献

参考文献9

  • 1NANDI A K,AZZOUZ E E. Automatic identification of digital modulation types[JJ. Signal Processing, 1995 ,47( I) :55-69.
  • 2SWAMI A, SADLER B M. Hierarchical digital modulation classifica- tion using cumulants [J]. IEEE Trans on COmmunications ,2000, 48(3) :416-429.
  • 3GARDNER W A, SPOONER C M. Cyclic spectral alysis. for signal detection and modulation recognition [ C J IIProc of MILCOM. 1988: 419-424.
  • 4FORERO P A, CANO A, GIANNAKIS G B. Distributed featim,-based modulation classification using wireles Sensor netwbrks [C J I/Proc of IEEE MILCOM.2008:1-7,16-19.
  • 5HEADLEY W C, REED J D, Da SILVA C )t C . Distributed cyclic spectrum feature-based modulation classification [ C J IIProc of IEEE WCNC. 2008: 1200-1204.
  • 6TANG Z B,PATTIPATI K R,KLEINMAN D L. A distributed Mary hypothesis testing problem with correlated observations [ C J IIProc of the 28th International Conference on Decision arid Control. 1989 :562- 568.
  • 7SU W, KOSINSKI 1. Framework of network centric signal sensing for automatic modulation classification [ C J IIProc ofIEEE INSC, 2010.
  • 8xu J,SU W,ZHOU M C. Likelihood function-based modulation classification in bandwidth-constrained sensor networks [ C J IIProc of IEEE ICNSC. 2010 :530-533.
  • 9xu J, SU W , ZHOU M C. Distributed automaticthoduliion classification with multiple sensors [J]. IEEE Sensors Journal, 2010, 10 (11) :1779-1785.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部