摘要
A position-sensitive detector is designed for neutron detection. It uses a single continuous screen of a self-made lithium glass scintillator, rather than discrete crystal implementations, coupling with a multi-anode PMT (MaPMT). The scintillator is fast and efficient; with a decay time of 34 ns and thermal neutron detection efficiency of around 95.8% for the 3 mm thick screen, and its light yield is around 5670 photons per neutron and 3768 photons per MeV γ rays deposition. The spatial resolution is around 1.6 mm (FWHM) with the energy resolution around 34.7% by using α (5.2 MeV) rays test.
A position-sensitive detector is designed for neutron detection. It uses a single continuous screen of a self-made lithium glass scintillator, rather than discrete crystal implementations, coupling with a multi-anode PMT (MaPMT). The scintillator is fast and efficient; with a decay time of 34 ns and thermal neutron detection efficiency of around 95.8% for the 3 mm thick screen, and its light yield is around 5670 photons per neutron and 3768 photons per MeV γ rays deposition. The spatial resolution is around 1.6 mm (FWHM) with the energy resolution around 34.7% by using α (5.2 MeV) rays test.
基金
Supported by the National Natural Science Foundation of China(10875140,10890092)