期刊文献+

GRAPH GRAMMAR METHOD FOR 3-D CORNER DETECTION

图形文法在三维角点检测中的应用(英文)
下载PDF
导出
摘要 Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the object detection, while automatically discriminating 3-D corners from ordinary corners is difficult. A novel method for 3-D corner detection is proposed based on the image graph grammar, and it can detect the 3-D features of corners to some extent. Experimental results show that the method is valid and the 3-D corner is useful for image matching. 许多局部特征描述都假设场景是平面的,而在真实场景中捕捉到的图片都是来自三维世界。在图像匹配和目标检测中,三维角点作为一种包含三维信息的形状特征,是一种新的重要不变特征,但从普通角点中自动鉴选出三维角点比较困难。基于图像的图形文法提出一种新的三维角点检测方法。该方法在一定程度上能够检测出角点的三维特性。实验结果表明三维角点特征在图像匹配中是适用的,证明了所提出的方法的有效性。
作者 关卓威 张晔
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期289-293,共5页 南京航空航天大学学报(英文版)
关键词 graph grammar 3-D corner detection production rule 图形文法 三维角点检测 产生规则
  • 相关文献

参考文献19

  • 1Vedaldi A, Soatto S. Features for recognition: Viewpoint invariance for non-planar scene[C]//Pro- ceeding of the International Conference on Computer Vision. Los Angeles, USA: [s. n.], 2005: 1474- 1481.
  • 2Lowe D. Distinctive image features from scale-in- variant key points[J].International Journal of Com- puter Vision, 2004,60(2) :91-110.
  • 3Ke Y, Sukthankar R. PCA-SIFT: A more distinc- tive representation for local image descriptors[C]// IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition. Pittsburgh, USA: IEEE Computer Society, 2004,2 : 1999.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2005, 27 (10):1615-1630.
  • 5Belongie S, Malik J, Puzicba J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2002,24 (4) : 509-522.
  • 6Johnson A. Spin-images: A representation for 3-D surface matching [D]. Pittsburgh, USA: Carnegie Mellon University, 1997.
  • 7Bay H, Tuytelaars T, Van G L. SURF: Speeded up robust features[C]//Lecture Notes in Computer Sci- ence. Berlin : Springer-Verlag, 2006,3951 : 404-417.
  • 8Kalia R. An analysis of the effect of different image preprocessing techniques on the performance of SURF: Speeded up robust features[C]//17th Korea-Japan Joint Workshop on Frontiers of Computer Vi- sion(FCV). South Korea.. IEEE, 2011,17:1-6.
  • 9Mohan A, Papageorgiou C, Poggio T. Example- based object detection in images by components[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23 (4) :349-361.
  • 10Brown L M. Example-based color vehicle retrieval for surveillance[C]//7th IEEE Conference on Ad- vanced Video and Signal Based Surveillance (AVSS). USA: IEEE, 2010,17:91-96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部