期刊文献+

曲线网格下精确四阶精度有限体积紧致方法

A Fourth-Order-Accurate and Compact Finite Volume Method(FVM) on Curvilinear Grids
下载PDF
导出
摘要 研究了一种求解可压缩欧拉方程的精确四阶精度有限体积紧致方法。通过引入坐标变换,构造了精确四阶精度的体平均量近似和面平均量近似方法,以解决有限体积方法中的积分近似问题,并在曲线网格上辅助四阶精度Padé型紧致格式对欧拉方程进行空间离散。构造了积分型高精度紧致滤波方法代替人工粘性耗散,使计算过程收敛。通过计算欧拉圆柱绕流和Ringleb流动,验证了方法的正确性和有效性。 To our knowledge, it is difficult to apply the accurate and compact FVM to curvilinear grids because of the difficulty in calculating integral approximation accurately on curvilinear grids. With the coordinate transform, we derive the equations for calculating fourth-order-accurate cell-averaged variables and interface-averaged variables so as to solve the integral approximation problem in the FVM and the eurvilinear grid application problems. We use the fourth-order Pad6 compact scheme to carry out the spatial diseretization of the Euler equations. We derive an in- tegral-type high-order compact filtering equation to replace the artificial dissipation in order to converge the calcula- tion in the time marching process. Finally, we give two numerical simulation examples to verify the correctness and effectiveness of our method. The simulation results, given in Figs. 2 through 6 and Table 1, show preliminarily that : ( 1 ) the calculation of the flow over a cylinder and the Ringleb flow with our method can reach the fourth-or- der accuracy; (2) our method can accomplish high-order integral approximation and solve the curvilinear grid ap- plication problems.
作者 廖飞 叶正寅
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第6期836-840,共5页 Journal of Northwestern Polytechnical University
关键词 计算流体力学 欧拉方程 有限体积法 积分近似 紧致格式 曲线网格 坐标变换 精确四阶精度 computational fluid dynamics,pact scheme, curvilinear grids,Euler equations, finitecoordinate transform,volume method, integral approximation, comfourth-order accuracy
  • 相关文献

参考文献7

  • 1Lele S K. Compact Finite Difference Schemes with Spectral-Like Resolution. Journal of Computational Physics, 1992, 103 ( 1 ) : 16-42.
  • 2Gaitonde D, Shang J S. Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena. Journal of Computational Physics, 1997, 138 : 617-621.
  • 3Kobayashi M H. On a Class of Pad6 Finite Volume Methods. Journal of Computational Physics, 1999, 156:137-180.
  • 4Pereira J M C, Kobayashi M H, Pereira J C F. A Fourth-Order-Accurate Finite Volume Compact Method for the Incompressible Navier-Stokes Solutions. Journal of Computational Physics, 2001, 167:217-243.
  • 5Piller M, Stalio E. Finite-Volume Compact Schemes on Staggered Grids. Journal of Computational Physics, 2004, 197: 299 -340.
  • 6Piller M, Stalio E. Compact Finite Volume Schemes on Boundary-Fitted Grids. Journal of Computational Physics, 2008, 227 : 4736-4762.
  • 7Vinit Satav, Ray Hixon M. Nallasamy, et al. Validation of a Computational Aeroacoustics Code for Nonlinear Flow about Com- plex Geometries Using Ringleb's Flow. AIAA-2005-2871.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部