期刊文献+

Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process 被引量:5

Mg-Ti旋转摩擦焊过程的摩擦产热及原子扩散行为(英文)
下载PDF
导出
摘要 An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal. 利用新型物理模拟装置进行Mg-Ti旋转摩擦焊过程产热机理及原子扩散行为的研究,该装置包含高速摄像、红外热成像及力学传感器系统。结果表明,摩擦焊过程中,摩擦因数经历两个稳态阶段的变化。第一个稳态阶段为库伦摩擦,以磨蚀为主要形式;第二个稳态阶段为粘着摩擦,以塑性流动为主要形式。另外,随着旋转转速及轴向压力的提高,轴向位移、摩擦温度及摩擦系数的增加率也随之明显提高。Mg-Ti摩擦焊过程存在原子的快速扩散现象,该过程中由摩擦大变形激活的扩散系数大约是热激活扩散系数的105倍。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2665-2671,共7页 中国有色金属学报(英文版)
基金 Projects (51101126, 51071123) supported by the National Natural Science Foundation of China Projects (20110491684, 2012T50817) supported by the China Postdoctoral Science Foundation Project (20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
关键词 Mg-Ti friction welding rotating friction welding heat generation atom diffusion friction coefficient Coulombfriction stick friction Mg—Ti 摩擦焊 旋转摩擦焊 产热 原子扩散 摩擦因数 库仑摩擦 粘着摩擦
  • 相关文献

参考文献14

  • 1PEW J W, NELSON T W, SORENSEN C D. Torque based weld power model for friction stir welding [J]. Science and Technology of Welding and Joining, 2007, 12(4): 341-347.
  • 2UDAY M B, FAUZI M N A, ZUHAILAWATI H, ISMAIL A B. Advances in friction welding process: a review [J]. Science and Technology of Welding and Joining, 2010, 15(7): 534-558.
  • 3SCHNEIDER J, BESHEARS R, NLrNES A C. Interfacial sticking and slipping in the friction stir welding process [J]. Materials Science and Engineering A, 2006, 435: 297-304.
  • 4MAALEKIAN M, KOZESCHNIK E, BRANTNER H P, CERIAK H. Comparative analysis of heat generation in friction welding of steel bars [J]. Acta Materialia, 2008, 56(12): 2843 2855.
  • 5MISHRA R S, MA Z Y. Friction stir welding and processing [J]. Materials Science and Engineering R, 2005, 50(1-2): 1-78.
  • 6KOVACEVIC R, CHEN C M. Finite element modeling of friction stir welding- Thermal and thermomechanical analysis [J]. International Journal of Machine Tools & Manufacture, 2003, 43 (13): 1319-1326.
  • 7MAALEKIAN M. Thermal modeling of friction welding [J]. Isij International, 2008, 48(10): 1429-1433.
  • 8ZHANG Q Z, ZHANG L W, LIU W W, ZHANG X G, ZHU W H, QU S. 3D rigid viscoplastic FE modelling of continuous drive friction welding process [J]. Science and Technology of Welding and Joining, 2006, 11 (6): 737-743.
  • 9NANDAN R, ROY G C LIENERT T J, DEBROY T. Three-dimensional heat and material flow during friction stir welding of mild steel [J]. Aeta Materialia, 2007, 55(3): 883-895.
  • 10JIN H W, AYER R, MUELLER R R, LING S, FORD S. Interface structure in a Fe-Ni friction stir welded joint [J]. Scripta Materialia, 2005, 53(12): 1383-1387.

二级参考文献26

  • 1刘洪喜,王浪平,王小峰,汤宝寅.LY12CZ铝合金表面等离子浸没离子注入氮层的摩擦磨损性能研究[J].摩擦学学报,2006,26(5):417-421. 被引量:11
  • 2ZhuMinhao(朱昱昊) CaiZhenbing(蔡振兵) TanJuan(谭娟)etal.摩擦学学报,2006,26(4):306-306.
  • 3ZhangChunhua(张春华) ZhangSong(张松) WenXiao-zhong(文效忠)etal.稀有金属材料与工程,2005,(34):701-701.
  • 4Mishra R S, Ma Z Y, Charit I. Materials Science and Engineering A [J], 2003, 341 (1-2): 307.
  • 5Mishra R S, Ma Z Y. Materials Science and Engineering R[J], 2005, 50(1-2): 1.
  • 6Morisada Y, Fujii H, Nagaoka T et al. Materials Science and Engineering A [J], 2006, 433 ( 1-2): 50.
  • 7Morisada Y, Fujii H, Nagaoka T et al. Composites:Part A[J], 2007, 38:2097.
  • 8Lee C J, Huang J C, Hsieh P J. Scripta Materialia[J], 2006, 54(7): 1415.
  • 9Morisada Y, Fujii H, Nagaoka T et al. Scripta Materialia[J], 2006, 55(11): 1067.
  • 10Morisada Y, Fujii H, Nagaoka T et al. Materials Science and EngineeringA [J], 2006, 419(1-2): 344.

共引文献6

同被引文献72

  • 1王岑,曹睿,林巧力,王清,董闯,陈剑虹.镁/钛异种金属冷金属过渡焊接的温度场模拟[J].焊接学报,2015,36(4):17-20. 被引量:12
  • 2郗雨林,柴东朗,张文兴,曹利强.钛合金颗粒增强镁基复合材料的制备与性能[J].稀有金属材料与工程,2006,35(2):308-311. 被引量:9
  • 3熊江涛,张赋升,李京龙,黄为东.镁合金与钛合金的瞬间液相扩散焊[J].稀有金属材料与工程,2006,35(10):1677-1680. 被引量:19
  • 4VILAR R, SANTOS E C, FERREIRA P N, FRANCO N, DA SILVA. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding [J]. Acta Materialia, 2009, 57(18): 5292-5302.
  • 5WANG S H, CHEN J Y, XUE L. A study of the abrasive wear behaviour of laser-clad tool steel coatings [J]. Surface & Coating Technology, 2006, 200(11): 3446-3458.
  • 6YAN H, ZHANG P L, YU Z S, LI C G, LI R D. Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper [J]. Optical & Laser Technology, 2012, 44(5): 1351-1358.
  • 7YAN H, WANG A H, XU K D, WANG W Y, HUANG Z W. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding [J]. Journal of Alloy and Compounds, 2010, 505(2-3): 645-653.
  • 8GU D D, HAGEDOMRN Y C, MEINERS W, MENG G B, BATISTA R J S, WISSENBACH K, POPRAWE R. Densification behavior, microstructure evolution, and wear performance ofselective laser melting processed commercially pure titanium [J]. Acta Materialia, 2012, 60(9): 3849-3860.
  • 9GU D D, MENG G B, LI C, MEINERS W, POPRAWE R. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J], Scripta Materialia, 2012, 67(2): 185-188.
  • 10GU D D, HONG C, MENG G B. Densification, microstructure, and wear property of in situ titanium nitride-reinforced titanium silicide matrix composites prepared by a novel selective laser melting process [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 697-708.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部