期刊文献+

Design of strain-introduced MZI interleaver on LiNbO_3 substrate

Design of strain-introduced MZI interleaver on LiNbO_3 substrate
原文传递
导出
摘要 A strain-introduced Mach-Zehnder interferometer (MZI) interleaver on lithium niobate (LiNbO3 ) is proposed. The structure of the strain-introduced waveguide is designed in detail, and is produced by depositing a SiO2 film on the annealed proton-exchanged LiNbO3 waveguide. Considering the sensitivities of the edge strain to the deposition temperature and the thickness of the SiO2 film, an optimum design of 50 GHz interleaver on this structure is given through analyzing the effective index changes for E x pq mode by finite difference method (FDM). The length of the bending waveguide in this interleaver is just two thirds of that in the conventional interleaver due to the high refractive index difference. A strain-introduced Mach-Zehnder interferometer (MZI) interleaver on lithium niobate (LiNbO3) is proposed. The struc- ture of the strain-introduced waveguide is designed in detail, and is produced by depositing a SiO~ film on the annealed proton-exchanged LiNbO3 waveguide. Considering the sensitivities of the edge strain to the deposition temperature and the thickness of the SiO2 film, an optimum design of 50 GHz interleaver on this structure is given through analyzing the effective index changes for E'eq mode by finite difference method (FDM). The length of the bending waveguide in this interleaver is just two thirds of that in the conventional interleaver due to the high refractive index difference.
出处 《Optoelectronics Letters》 EI 2013年第1期4-8,共5页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China (No.61177054)
  • 相关文献

参考文献18

  • 1B. Shine and I. Bautista, J. Lightwave Technol. 8, 140 (2000).
  • 2ZHANG Bao-ge, TAO Cai-xia and LU Yan, Journal of Optoelectronics Laser 21, 1641 (2010).
  • 3H. P. Chan, Q. Wu, K. X. Chen, W. Y. Chart and B. R Pal, International Photonics Global Conference (IPGC), Singapore, 2008.
  • 4K. Jinguji and M. Oguma, J. Lightwave Technol. 18, 252 (2000).
  • 5Lian-Wee Luo, Salah Ibrahim, Arthur Nitkowski, Zhi Ding, Carl B. Poitras, S. J. Ben Yoo and Michal Lipson, Opt. Ex- press 18, 23079 (2010).
  • 6K. X. Chen, H. P. Chan, F. S. Chen and W. Y. Chan, IEEE Photonics Technol. Lett. 23, 1157 (2011).
  • 7W. Tzyy-Jiann and C. Cha-Hong, IEEE Photonics Technol. Lett. 19, 1904 (2007).
  • 8W. Tzyy-Jiann, C. Cha-Hong and L. Che-Yung, Opt. Lett. 32, 2777 (2007).
  • 9M. Buda, G. Iordache, G. A. Acket, T. G. van der Roer, L. M. F. Kaufmann, B. H. van Roy, E. Smallbrugge, I. Moerman and C, Sys, IEEE J. Quantum Electron. 36, 1174 (2000).
  • 10O. Eknoyan, H. E Taylor, Z. Tang, V. P. Swenson and I. M. Marx, Appl. Phys. 60, 27 (1992).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部