期刊文献+

独立分量分析及其在信号处理中的应用 被引量:22

Independent Component Analysis and Its Application to Signal Processing
下载PDF
导出
摘要 独立分量分析是近年来由盲源分离技术发展而来的一种多维信号统计处理方法,可以根据源信号的基本统计特征,由观测数据最终恢复出源信号.该方法在很多与信号处理相关的领域有强大的应用潜力.文中简要介绍了独立分量分析的基本概念、原理及各种独立性判据,综述了独立分量分析在语音信号处理、图像处理、移动通信等领域的应用,最后结合笔者的研究探索,总结了独立分量分析的研究进展和发展趋势. As a new statistical processing technique for multidimensional signals recently developing from blind source separation,independent component analysis(ICA) can recover latent independent sources from measured mixed data according to the basic statistical features of the sources,so that it has been successfully applied to many signal processing-related fields.In this paper,after briefly introducing the basic concept,principle and indepen-dent criteria of ICA,the authors put their emphases on the practical applications of ICA to such fields as speech signal processing,image processing and wireless communication,and then,based on their research results,they sum up the research progress and development direction of ICA.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期1-12,共12页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61004054 61071212) 华南理工大学中央高校基本科研业务费专项资金资助项目(2012ZZ0028)
关键词 信号处理 独立分量分析 盲源分离 高阶统计量 signal processing independent component analysis blind source separation higher-order statistics
  • 引文网络
  • 相关文献

参考文献84

  • 1Jutten C, Herauh J. Blind separation of sources, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing, 1991,24 ( 1 ) : 1-10.
  • 2Bell A J, Sejnowski T J. An information-maximization ap- proach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 : 1129-1159.
  • 3Cichocki A, Amari S. Adaptive blind signal and image processing :learning algorithms and applications [ M ]. New York : Wiley,2002.
  • 4Lee T W, Girolami M, Sejnowski T J, et al. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J]. Neural Computation, 1999,11 ( 2 ) :409-433.
  • 5Hyviirinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transactions on Neural Networks, 1999,10(3 ) :626-634.
  • 6Hyvarinen A, Cristescu R, Oja E. A fast algorithm for esti- mating overcomplete ICA bases for image windows [ C ]// Proceedings of International Joint Conference on Neural Networks. Washington D C :IEEE, 1999.
  • 7Hyvarinen A. Independent component analysis in the pre- sence of Gaussian noise by maximizing joint likelihood [ J ]. N erualcomputing, 1999,22 : 49 - 67.
  • 8Nadal J,Parga N. Non linear neurons in the low noise limit: a factorial code maximizes information transfer [ J ]. Networks, 1994,5 : 565- 581.
  • 9Burel G. Blind separation of sources: a nonlinear neural algorithm [ J ]. Neural Networks, 1992,5 (6) :937-947.
  • 10Jutten C, Babaie-Zadeh M, Karhunen J. Handbook of blind source separation, independent component analysis and applications. Amsterdam : Academic Press ,2010.

二级参考文献186

共引文献311

同被引文献159

引证文献22

二级引证文献41

相关主题

;
使用帮助 返回顶部