期刊文献+

Novel Control Vector Parameterization Method with Differential Evolution Algorithm and Its Application in Dynamic Optimization of Chemical Processes 被引量:2

基于差分进化算法的控制变量参数化方法及其在化工过程动态优化中的应用(英文)
下载PDF
导出
摘要 Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods. Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameterization (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the proposed methods.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第1期64-71,共8页 中国化学工程学报(英文版)
基金 Supported by the Major State Basic Research Development Program of China(2012CB720500) the National Natural Science Foundation of China(Key Program:U1162202) the National Science Fund for Outstanding Young Scholars(61222303) the National Natural Science Foundation of China(61174118,21206037) Shanghai Leading Academic Discipline Project(B504)
关键词 control vector pararneterization differential evolution algorithm dynamic optimization chemical processes 差分进化算法 参数化方法 动态优化 化工过程 控制向量 应用 数值方法 时间间隔
  • 相关文献

参考文献6

二级参考文献49

  • 1张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 2张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280. 被引量:11
  • 3张兵,俞欢军,陈德钊.序贯优化化工动态问题的蚁群算法[J].高校化学工程学报,2006,20(1):120-125. 被引量:15
  • 4Dadebo S A, Mcauley K B. Dynamic optimization of constrained chemical engineering problems using dynamic programming [J].Computers and Chemical Engineering, 1995, 19(5): 513-525.
  • 5Roubos J A, van Straten G, van Boxtel A J B. An evolutionary strategy for fed-batch bioreactor optimization: concepts and performance [J]. Journal of Biotechnology, 1999, 67(2): 173-187.
  • 6Pham Q T, Dynamic optimization of chemical engineering processes by an evolutionary method [J]. Computers and Chemical Engineering, 1998, 22(7): 1089-1097.
  • 7Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework [J]. Computers and Chemistry, 2001, 25(6): 583-595.
  • 8Dorigo M, Maniezzo V, Colomi A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 1-13.
  • 9Dorigo M, Gambardella L M Ant colonies for the traveling salesman problem [J]. Bio Systems, 1997, 43(2): 73-81.
  • 10Lee J, Ramirez W F. Optimal fed-batch control of induced foreign protein production by recombinant bacteria [J]. AIChE J, 1994,40(5): 899-907.

共引文献51

同被引文献29

  • 1张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280. 被引量:11
  • 2莫愿斌,陈德钊,胡上序.混沌粒子群算法及其在生化过程动态优化中的应用[J].化工学报,2006,57(9):2123-2127. 被引量:29
  • 3Biegler L T, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation[J]. Computers & Chemical Engineering, 1984, 8(3): 243-247.
  • 4Goh C, Teo K. Control parametrization: a unified approach to optimal control problems with general constraints[J]. Automatica, 1988. 24(1): 3-18.
  • 5Luus R. Optimal control by dynamic programming using accessible grid points and region reduction[J]. Hungarian Journal of Industrial Chemistry, 1989, 17(4): 523-543.
  • 6Luus R. Optimization of fed-batch fermentors by iterative dynamic programming[J]. Biotechnology and Bioengineering, 1993, 41(5): 599-602.
  • 7Rezende M, Costa C, Costa A, Maciel M, Filho R M. Optimization of a large scale industrial reactor by genetic algorithms[J]. Chemical Engineering Science, 2008, 63(2): 330-341.
  • 8Villarreal-Cervantes M G, Cruz-Villar C A, Alvarez-Gallegos J, Portilla-Flores, E A. Differential evolution techniques for the structure-control design of a five-bar parallel robot[J]. Engineering Optimization, 2010, 42(6): 535-565.
  • 9Li J B, Liu X G, Jiang H Q, Xiao Y D. Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm[J]. Journal of Applied Polymer Science, 2012, 125(2): 943-951.
  • 10Li J B, Liu X G. Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm[J]. Neurocomputing, 2011, 74(5): 735-740.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部