期刊文献+

基于多分辨率的PET图像优质有序子集最大期望重建算法 被引量:1

High quality ordered subset expectation maximization reconstruction algorithm based on multi-resolution for PET images
下载PDF
导出
摘要 在正电子发射断层扫描(PET)成像中,最大似然期望(MLEM)算法因不能有效地抑制噪声、收敛速度慢而难以直接应用于临床。有序子集最大期望(OSEM)算法具有较快的收敛速度,但是在迭代一定次数之后重建质量会迅速下降。针对此问题,将多分辨率技术引入到有序子集最大期望重建算法的子集中,以此抑制噪声,同时稳定求解过程。实验结果表明,新的重建算法克服了传统算法图像退化的缺点,并具有加快算法收敛速度的优点,能获得较高的信噪比(SNR)和较好的图像视觉效果。 In Positron Emission Tomography (PET) imaging, Maximum Likelihood Expectation Maximization (MLEM) algorithm cannot be directly applied to clinical diagnosis due to suppressing noise ineffectively and converging slowly. Although Ordered Subset Expectation Maximization (OSEM) algorithm converges fast, it will lead to a significant decline in the quality of the reconstructed image. To address this problem, multi-resolution technology was introduced into the subset of the OSEM reconstruction algorithm to suppress noise and stabilize solving process. The experimental results indicate that the new algorithm overcomes the drawback of the traditional algorithm on degrading the reconstructed image and has the advantage of fast convergence. The proposed reconstruction algorithm can obtain a higher Signal-to-Noise Ratio (SNR) and a superior visual effect.
出处 《计算机应用》 CSCD 北大核心 2013年第3期648-650,659,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071192 61271357) 山西省自然科学基金资助项目(2009011020-2) 山西省高等学校优秀青年学术带头人支持计划项目
关键词 正电子发射断层扫描成像 最大似然期望 有序子集最大期望 多分辨率 小波收缩 Positron Emission Tomography (PET) imaging Maximum Likelihood Expectation Maximization (MLEM) Ordered Subset Expectation Maximization (OSEM) multi-resolution wavelet shrinkage
  • 相关文献

参考文献17

  • 1HERMAN G T. Image Reconstruction from Projections:implementation and application[M].Beilin:Springer-Verlag,1979.
  • 2SHEPP L A,VARDI Y. Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,(02):113-122.
  • 3HUDSON H M,SLARKIN R. Accelerated image reconstruction using ordered subsets of projection data[J].IEEE Transactions on Medical Imaging,1994,(04):601-609.doi:10.1109/42.363108.
  • 4FESSLER J A,HERO A O. Space alternating generalized expectation maximization algorithm[J].IEEE Transactions on Signal Processing,1994,(10):2664-2677.doi:10.1109/78.324732.
  • 5BYRNE C L. Choosing parameters in block-iterative ordered subset reconstruction algorithm[J].IEEE Transactions on Image Processing,2005,(03):321-327.
  • 6BYRNE C L. Convergent block-iterative algorithms for image reconstruction from inconsistent data[J].IEEE Transactions on Image Processing,1997,(09):1296-1304.doi:10.1109/83.623192.
  • 7RAHEJA A,DONIERE T F,DHAWAN A P. Multi-resolution expectation maximization reconstruction algorithm for positron emission tomography using wavelet processing[J].IEEE Transactions on Nuclear Science,1999,(03):594-602.doi:10.1109/23.775585.
  • 8SHENG J H,LIU D R. An improved maximum likelihood approach to image reconstruction using ordered subsets and data subdivisions[J].IEEE Transactions on Nuclear Science,2004,(01):130-135.doi:10.1109/TNS.2003.823015.
  • 9MALLAT S. Multifrequency channel decomposition of images and wavelets[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(12):2091-2110.
  • 10PENNEC E L,MALLAT S. Image compression with geometrical wavelets[A].Piscataway,NJ:IEEE Press,2000.661-664.

二级参考文献24

  • 1TORVIK P J, BAGLEY R L. On the appearance of the fractional derivative in the behavior of real materials[ J]. Journal of Applied Mechanics, 1984, 51(2): 294-298.
  • 2DONOHO D L, JOHNSTONE I, KERGYACHARIAN G, et al. Density estimation by wavelet thresholding[J]. The Annals of Statistics, 1996, 24(2): 508-538.
  • 3PODLUBNY I. Fractional differential equations[ M]. San Diego: Acdemic Press, 1999.
  • 4COHEN A, DAUBECHIES I. Orthonormal bases of compactly supported wavelets III batter frequency resolution[ J]. SIAM Journal on Mathematical Analysis, 1993, 24(2): 520-527.
  • 5DAUBECHIES I. Orthonormal bases of compactly supported wavelets[ J]. Communications on Pure and Applied Mathematics, 1988, 41(7) : 909 -996.
  • 6XU YANSUN, WEAVER J B, HEALY D M, Jr, et al. Wavelet transform domain filters: a spatially selective noise filtration technique [ J]. IEEE Transactions on Image Processing, 1994, 3(6): 747 - 758.
  • 7YU WEI-BO, WANG YAN, PAND BAI-MEI, et al. An improved threshold de-noising algorithm based on inter-scale dependency of wavelet [ C]// CMCE 2010: Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering. Piscataway, NJ: IEEE, 2010:231-233.
  • 8SAEEDI J, MORADI M H, ABEDI A. Image denoising based on fuzzy and intra-scale dependency in wavelet transform domain [ C]// ICPR 2010: Proceedings of the 2 0 th International Conference on Pattern Recognition. Washington, DC: IEEE Computer Society, 2010:2672-2675.
  • 9PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising [ J]. IEEE Transactions on Image Processing, 2002, 11 (5) : 545 - 557.
  • 10GUPTA K K, GUPTA R. Feature adaptive wavelet shrinkage for image denoising [ C]// ICSCN 2007: The 2007 International Conference on Signal Processing, Communications and Networks. Piseataway, NJ: IEEE, 2007:81-85.

共引文献5

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部