期刊文献+

基于GSO算法的最小连通支配集问题求解 被引量:3

Solution of Minimum Connected Dominating Set Problem Based on Glowworm Swarm Optimization Algorithm
下载PDF
导出
摘要 经典的最小连通支配集(MCDS)计算是NP难问题。为此,提出一种利用萤火虫优化算法求解该难题的新方法。把网络中的每个节点当作一个萤火虫个体,以节点度为基础构成荧光素,通过概率选择和荧光素调节机制,使个体被吸引向邻接的高亮度个体,从而由所选出的个体组成网络的支配集。经连接和修剪处理后,得到MCDS的近似解。在无线传感器网络模型的单位圆盘图上进行模拟实验,结果表明,该算法得到的连通支配集规模较小,更接近集中式算法的结果。 For computing the Minimum Connected Dominating Set(MCDS) in the network,a new algorithm is proposed based on Glowworm Swarm Optimization(GSO) algorithm.Each node of network is considered as individual glowworm emitting luciferin whose intensity is dependent on the degree of the node.By use of the scheme of probabilistic selection and luciferin adjustment,some nodes are attracted toward its neighbors having higher intensity of luciferin,and in this way,a dominated set of the network is constructed which contains the priority individuals.The nodes of the dominating set are connected and a pruning rule is applied to eliminate some redundant nodes for MCDS.Numerical results in Unit Disk Graphs(UDG) modeling wireless networks show the GSO-based algorithm can provide smaller CDS scale,and it is closer to centralized algorithm.
作者 赵学锋
出处 《计算机工程》 CAS CSCD 2013年第2期99-102,107,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61163037)
关键词 最小连通支配集 萤火虫优化算法 萤光素 节点度 单位圆盘图 Minimum Connected Dominating Set(MCDS) Glowworm Swarm Optimization(GSO) algorithm luciferin node degree Unit Disk Graph(UDG)
  • 相关文献

参考文献10

  • 1Han Bo. Zone-based Virtual Backbone Formation in Wireless Ad Hoc Networks[J].Ad Hoc Networks Journal,2009,(01):183-200.
  • 2Butenko S,Cheng Xuzheng. A New Heuristics for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks[A].New York,USA:Kluwer Academic Publisher,2004.61-73.
  • 3赵学锋,王秀花,杨海斌,张贵仓.基于学习自动机的最小连通支配集算法[J].计算机工程,2011,37(10):149-151. 被引量:3
  • 4解文斌,李佳,鲜明,陈永光.基于拓扑特性的分布式虚拟骨干网算法[J].软件学报,2010,21(6):1416-1425. 被引量:10
  • 5Krishnanad K N,Ghose D. Glowworm Swarm Optimization for Simultaneous Capture of Multiple Local Optima of Multimodal Functions[J].Swarm Intelligence,2009,(02):87-124.
  • 6Krishnanad K N,Ghose D. Theoretical Foundations for Rendezvous of Glowworm-inspired Agent Swarms at Multiple Locations[J].Robotics and Autonomous Systems,2008,(07):549-565.
  • 7黄凯,周永权.一种改进的变步长自适应GSO算法[J].计算机工程,2012,38(4):185-187. 被引量:13
  • 8Liao W H,Kao Yucheng,Li Y S. A Sensor Deployment Approach Using Glowworm Swarm Optimization Algorithm in Wireless Sensor Networks[J].Expert Systems with Applications,2011,(10):12180-12188.
  • 9Cormen T H,Leiserson C E,Rivest R L. Introduction to Algorithms[M].[S.1.]:MIT Press,2001.
  • 10Dai Fei,Wu Jie. On Constructing K-connected Kdominating Set in Wireless Ad Hoc and Sensor Networks[J].Journal of Parallel and Distributed Computing,2006,(07):947-958.doi:10.1016/j.jpdc.2005.12.010.

二级参考文献14

  • 1陈宇,林亚平,王雷,张锦,李闻.移动Ad Hoc网络中最小连通支配集的分布式高效近似算法[J].计算机工程,2005,31(14):37-38. 被引量:5
  • 2唐勇,周明天.基于极大独立集的最小连通支配集的分布式算法[J].电子学报,2007,35(5):868-874. 被引量:21
  • 3毛莺池,冯国富,陈力军,陈道蓄.与位置无关的无线传感器网络连通性覆盖协议[J].软件学报,2007,18(7):1672-1684. 被引量:18
  • 4Han Bo.Zone-based Mutual Backbone Formation in Wireless Ad Hoc Networks[J].Ad Hoc Networks,2009,7(1):183-200.
  • 5Csendest M. Numerical Experiences with a New Generalized Subinterval Selection Criterion for Interval Global Optimization[J]. Reliable Computing, 2003, 9(2): 109-125.
  • 6Krishnanand K N, Ghose D. Glowworm Swarm Optimization: A Newmethod for Optimizing Multi-modalfunctions[J]. International Journal of Computational Intelligence Studies, 2009, 1(1): 93-119.
  • 7Krishnanand K N. Glowworm Swarm Optimization: A Multimodal Function Optimization Paradigm with Applications to Multiple Signal Source Localization Tasks[D]. [S. l.] : Indian Institute of Science, 2007.
  • 8Krishnanand K N, Ghose D. A Glowworm Swarm Optimization Based Multi-robot System for Signal Source Localization[M]. Berlin, Germany: [s. n.] , 2009.
  • 9Krishnanand K N, Ghose D. Chasing Multiple Mobile Signal Sources: A Glowworm Swarm Optimization Approach[C] //Proc. of the 3rd Indian International Conference on Artificial Intelligence. [S. l.] : IEEE Press, 2007.
  • 10袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2003..

共引文献23

同被引文献36

  • 1陆峰,陈祖煜,李素梅.应用遗传算法搜索边坡最小安全系数的研究[J].中国水利水电科学研究院学报,2003,1(3):236-239. 被引量:7
  • 2郑宏,田斌,刘德富,冯强.关于有限元边坡稳定性分析中安全系数的定义问题[J].岩石力学与工程学报,2005,24(13):2225-2230. 被引量:88
  • 3苏永华,赵明华,邹志鹏,欧阳光前.边坡稳定性分析的Sarma模式及其可靠度计算方法[J].水利学报,2006,37(4):457-463. 被引量:31
  • 4Mirea L.Fault Diagnosis Using Hybrid Wavelet/Elman Neural Netw orks[C]//Proceedings of the 15th International Conference on System Theory,Control,and Computing.Washington D.C.,USA:IEEE Press,2011:1-6.
  • 5Chandra R,Zhang Mengjie.Cooperative Coevolution of Elman Recurrent Neural Netw orks for Chaotic Time Series Prediction[J].Neurocomputing,2012,86(1):116-123.
  • 6Deng Jiamei.Dynamic Neural Networks with Hybrid Structures for Nonlinear System Identification[J].Engineering Applications of Artificial Intelligence,2013,26(1):281-292.
  • 7Kim Donghyun,Wu Yiwei,Li Yingshu,et al.Constructing Minimum Connected Dominating Sets with Bounded Diameters in Wireless Networks[J].IEEE Transactions on Parallel and Distributed Systems,2009,20(2):147-157.
  • 8Hussain S,Shafique M H,Yang L T.Constructing a CDS-based Network Backbone for Energy Efficiency in Industrial Wireless Sensor Network[C]//Proceedings of the 12th IEEE International Conference on High Perfor-mance Computing and Communications.Washington D.C.,USA:IEEE Press,2010:322-328.
  • 9Wu Yiwei,Li Yingshu.Construction Algorithms for kconnected m-dominating Sets in Wireless Sensor Networks[C]//Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing.New York,USA:ACM Press,2008:83-90.
  • 10Malhotra R.IP Routing[M].[S.l.]:O’Reilly Media,Inc.,2002.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部