期刊文献+

一种新的(m+1,n)理性秘密分享机制 被引量:1

A New (m+1,n) Rational Secret Sharing Scheme
下载PDF
导出
摘要 重复理性秘密分享机制仅适用于交互轮数无限的情形,但是无限轮的理性秘密分享机制的效率不高。为此,在(m,n)Shamir秘密分享机制的基础上,结合有限重复博弈,为每个参与者赋予一个参加协议的时限,由此提出一种新的(m+1,n)有限轮理性秘密分享机制。分析结果表明,当时限和参与者的效用函数满足一定条件时,可以得到一个常数轮的理性秘密分享机制,使所有理性参与者可以恢复秘密。 Iterated rational secret sharing scheme only fits for the case of infinite rounds.But the secret sharing scheme with infinite rounds is not efficient.Combined with finitely repeated game theory,this paper proposes a new(m+1,n) finite iterated rational secret sharing scheme assigning each player a time limit based on Shamir’s secret sharing scheme.Analysis results show that a rational secret sharing scheme within constant rounds can be constructed when the time limit and payoff functions suffice some conditions,where each player can reconstruct the secret.
作者 赵永升
出处 《计算机工程》 CAS CSCD 2013年第2期108-111,118,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60875039) 山东省自然科学基金资助项目(ZR2011FM017)
关键词 博弈论 重复博弈 理性秘密分享 纳什均衡 效用函数 合作策略 game theory repeated game rational secret sharing Nash equilibrium utility function cooperation strategy
  • 相关文献

参考文献1

二级参考文献15

  • 1Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(1): 612-613.
  • 2Blakeley G R. Safeguarding Cryptographic Keys[C]//Proceedings of the National Computer Conference. New York:AF1PS Press, 1979: 313-317.
  • 3Halpern J, Teague V. Rational Secret Sharing and Multiparty Computation[C]//Proceedings of the 36th Annual ACM Symposium on Theory of Computing(STOC). New York: ACM Press, 2004: 623- 632.
  • 4Kol G, Naor M. Cryptography and Game Theory: Designing Protocols for Exchanging Information[C] //Proceedings of the 5th Theory of Cryptography Conference (TCC). Berlin:Springer-Verlag, 2008: 317-336.
  • 5Kol G, Naor M. Games for exchanging information[C]// Proceedings of the 40th Annual ACM Symposium on Theory of Computing(STOC). New York: ACM Press, 2008: 423-432.
  • 6Chor B, Goldwasser S, Micali S. Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults[C] //Proceedings of the 26th Annual Symposium on Foundations of Computer Science. Washington, DC: IEEE Computer Society, 1985: 383-395.
  • 7Feldman R A practical scheme for non-interactive verifiable secret sharing[C] //Proceedings of the 28th IEEE Symp. On Foundations of Comp, Science(FOCS' 87). Los Angeles: IEEE Computer Society, 1987: 427-437.
  • 8Pedersen T P. Distributed Provers with Applications to Undeniable Signatures[C] //Proceedings of Eurocrypt'91, Lecture Notes in Computer Science, LNCS 547. Berlin:Springer-Verlag, 1991: 221- 238.
  • 9Lin H Y, Ham L. Fair Reconstruction of a Secret[J]. Information Processing Letters, 1995, 55(1): 45-47.
  • 10Katz J. Bridging game theory and cryptography: Recent results and future directions[C]//In 5th Theory of Cryptography Conference TCC 2008, LNCS 4984. Berlin:Springer-Verlag, 2008: 251-272.

共引文献3

同被引文献7

  • 1Shamir A. How to share a secret[J].{H}Communications of the ACM,1979,(11):612-613.
  • 2Blakley G R. Safeguarding cryptographic keys[A].{H}New York,1979.313-317.
  • 3Halpem J,Teague V. Rational secret sharing and mult-party computation:extended abstract[A].Chicago:ACM Press,2004.623-632.
  • 4Maleka S,Amjed S,Rangan C P. Rational secret sharing with repeated games[A].{H}Berlin:Springer-Verlag,2008.334-346.
  • 5Maleka S,Amjed S,Rangan C P. The deteministic protocol for rational secret Sharing[A].Miami,FL:IEEE ComputerSociety,2008.1-7.
  • 6张恩,蔡永泉.基于椭圆曲线的可验证的理性秘密共享方案[J].中国科学院研究生院学报,2011,28(6):806-810. 被引量:1
  • 7张恩,蔡永泉.基于双线性对的可验证的理性秘密共享方案[J].电子学报,2012,40(5):1050-1054. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部