期刊文献+

Explicit Breather-Type and Pure N-Soliton Solution of DNLS^+ Equation with Nonvanishing Boundary Condition 被引量:3

Explicit Breather-Type and Pure N-Soliton Solution of DNLS^+ Equation with Nonvanishing Boundary Condition
原文传递
导出
摘要 Based on a newly revised inverse scattering transform for the derivative nonlinear SchrSdinger (DNLS+) equation with nonvanishing boundary condition (NVBC), the explicit breather- type and pure N-soliton solution has been derived by some algebra techniques. The two-breather solution and the pure double-soliton solution have been given as two typical examples in illustration of the general formula of the multi-soliton solution. The asymptotic behaviors of the N-soliton solution are discussed in detail. Based on a newly revised inverse scattering transform for the derivative nonlinear SchrSdinger (DNLS+) equation with nonvanishing boundary condition (NVBC), the explicit breather- type and pure N-soliton solution has been derived by some algebra techniques. The two-breather solution and the pure double-soliton solution have been given as two typical examples in illustration of the general formula of the multi-soliton solution. The asymptotic behaviors of the N-soliton solution are discussed in detail.
作者 ZHOU Guoquan
出处 《Wuhan University Journal of Natural Sciences》 CAS 2013年第2期147-155,共9页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(10775105)
关键词 SOLITON BREATHER nonlinear equation derivativenonlinear Schr6dinger equation inverse scattering transform Zakharov-Shabat equation soliton breather nonlinear equation derivativenonlinear Schr6dinger equation inverse scattering transform Zakharov-Shabat equation
  • 相关文献

参考文献10

  • 1Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation [J]. Journal of Mathematical Physics, 1978, 19: 798-801.
  • 2Zhou G Q, Huang N N. An N-soliton solution to the DNLS equation based on revised inverse scattering transform [J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40: 13607-13623.
  • 3ZHOU Guoquan,BI Xintao.Soliton Solution of the DNLS Equation Based on Hirota's Bilinear Derivative Transform[J].Wuhan University Journal of Natural Sciences,2009,14(6):505-510. 被引量:11
  • 4ZHOU Guoquan School of Physics and Technology,Wuhan University,Wuhan 430072,Hubei,China.A Multi-Soliton Solution of the DNLS Equation Based on Pure Marchenko Formalism[J].Wuhan University Journal of Natural Sciences,2010,15(1):36-42. 被引量:4
  • 5Steudel H. The hierarchy of multi-soliton solutions deriva- tive nonlinear Schr6dinger equation [J]. J Phys A, 2003, 36: 1931-1946.
  • 6Chen Xiangjun, Lam Wakun. An inverse scattering trans- form for the derivative nonlinear Schr6dinger equation [J]. Physical Review E, 2004, 69(6): 066604.
  • 7Chen Xiangjun, Yang Jie, Lam Wakun. N-soliton solution for the derivative nonlinear Schr6dinger equation with nonvan- ishing boundary condition [J]. Journal of Physics A, 2006, 39: 3263-3274.
  • 8Lashkin V M. N-soliton solutions and perturbation theory for DNLS with nonvanishing condition [J]. J Phys A, 2007, 40: 6119-6132.
  • 9Cai Hao. Research about MNLS Equation and DNLS Equa- tion [D]. Wuhan: School of Physics and Technology, Wuhan University, 2005(Ch).
  • 10ZHOU Guoquan.A Newly Revised Inverse Scattering Transform for DNLS^(+) Equation under Nonvanishing Boundary Condition[J].Wuhan University Journal of Natural Sciences,2012,17(2):144-150. 被引量:3

二级参考文献27

  • 1Rogister A. Parallel propagation of nonlinear low-frequency waves in high-β plasma[J]. Phys Fluids,1971,14: 2733- 2739.
  • 2Kawata T,Kobayashi N,Inoue H. Soliton solutions of de- rivative nonlinear Schrodinger equation[J]. J Phys Soc Jpn, 1979,46: 1008-1015.
  • 3Mj lhus E. Nonlinear Alfven waves and the DNLS equa- tion: oblique aspects[J]. Phys Scr,1989,40: 227-236.
  • 4Mj lhus E,Hada T. Nonlinear Waves and Chaos in Space Plasmas[M].Tokyo: Terrapub,1997.
  • 5Ruderman M S. DNLS equation for large amplitude solitons propagating in an arbitrary direction in a high-β hall plasma [J]. J Plasma Phys,2002,67: 271-276.
  • 6Tzoar N,Jain M. Self-phase modulation in long-geometry optical waveguides[J]. Phys Rev A,1981: 23: 1266-1270.
  • 7Anderson D,Lisak M. Nonlinear asymmetric self-phase amplitude modulation and self-steepening of pulse in long optical waveguides[J]. Phys Rev A,1983,27: 1393-1398.
  • 8Kaup D J,Newell A C. An exact solution for a derivative nonlinear Schr?dinger equation[J]. Journal of Mathematical Physics,1978,19: 798-801.
  • 9Steudel H. The hierarchy of multi-soliton solutions deriva-tive nonlinear Schr?dinger equation[J]. Journal of Physics A: General,2003,36: 1931-1946.
  • 10Chen Xiangjun,Lam Wakun. An inverse scattering trans- form for the derivative nonlinear Schr?dinger equation[J]. Physical Review E,2004,69(6): 066604.

共引文献11

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部