期刊文献+

Constructing Non-binary Asymmetric Quantum Codes via Graphs 被引量:2

基于图的非二元非对称量子码构造(英文)
下载PDF
导出
摘要 The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way. The theory of quantum error cor-recting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum com-putation. Recently, the theory of quantum er-ror correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we gener-alize the construction of symmetric quantum codes via graphs (or matrices) to the asym-metric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples con- structed in this way.
出处 《China Communications》 SCIE CSCD 2013年第2期33-41,共9页 中国通信(英文版)
基金 supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
关键词 asymmetric quantum codes quantum MDS codes graph construction 量子噪声 二进制代码 非对称 最大距离可分码 信息不对称 量子计算 量子通信 量子通道
  • 引文网络
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]Wootters, W. K., Zurek, W. H., A single quantum cannot be cloned, Nature, 1982, 299: 802-803.
  • 2[2]Shor, P. W., Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 1995, 52: 2493.
  • 3[3]Steane, A. M., Multiple particle interference and quantum error correction, Proc. Roy. Soc. London A, 1996, 452:2551-2557.
  • 4[4]Calderbank, A. R., Rains, E. M., Shor, P. W. et al., Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 1998, 44(7): 1369-1387.
  • 5[5]Ashikhim, A., Knill, E., Non-binary quantum stabilizer codes, IEEE Trans. Inform. Theory, 2001, 47(11): 3065-3072.
  • 6[6]Matsumoto, R., Uyematsu, T., Constructing quantum error-correcting codes for pm-state sysetems from classical error-correcting codes, 1999, quant-ph/9911011.
  • 7[7]Rains, E. M., Nonbinary quantum codes, IEEE Trans. Inform. Theory, 1999, 45(9): 1827-1832.
  • 8[8]Schlingemann, D., Wemer, R. F., Quantum error-correcting codes associated with graphs, Phys. Rev. A, 2001, 65: No. 012308. quant-ph/0012111.
  • 9[9]Feng, K. Q., Quantum Codes [[6, 2, 3]]p and [[7, 3, 3]]p(p ≥ 3) Exist, IEEE Trans. Inform. Theory, 2002, 48(8):2384-2391.
  • 10[10]Knill, E., Laflamme, R., A theory of quantum error-correcting codes, Phys. Rev. A, 1997, 55: 900-911.

共引文献12

同被引文献7

引证文献2

二级引证文献5

;
使用帮助 返回顶部