期刊文献+

基于非局部Mohr-Coulomb模型的土体渐进破坏分析 被引量:6

Progressive failure of soils based on non-local Mohr-Coulomb models
下载PDF
导出
摘要 软化塑性模型的常规有限元数值分析结果严重依赖网格尺寸,而非局部塑性模型是解决这一问题的有效方法。但现有非局部模型仅能用于von Mises准则,无法用来进行一般软化土体渐进破坏分析。提出了一种改进的针对非局部模型的全隐式应力回代迭代计算方法,该方法具有在迭代计算过程中逐步确定弹塑性点的特点,克服了现有算法误差较大及不稳定的缺点。将非局部理论推广到Mohr-Coulomb塑性模型中,使其能用来分析土体稳定性问题。采用局部和非局部模型对两个土体稳定问题,包括条形基础承载力问题和三角形荷载下边坡稳定问题进行渐进破坏分析,数值计算结果表明该方法可以消除软化塑性有限元计算的网格敏感性,起到了正则化的效果。 The numerical solutions of softening plasticity model using the ordinary finite element method seriously depend on mesh size. The non-local theory is an effective way to solve this problem. But the existing non-local theory can only be applied in von Mises plasticity model and cannot be used to analyze the progressive failure of softening soils. An improved full implicit stress return iterative algorithm for non-local models is proposed. This algorithm, which can assure whether a Gauss point be plastic state after loading or not, overcomes inaccuracy and instability of the existing algorithms. The non-local theory is extended to the Mohr-Coulomb plasticity model, so that it can be used to analyze geotechnical problems. The numerical solutions of the strip foundation bearing and stability problems of slopes subjected to triangle loads using both the local and non-local models demonstrate that the proposed approach can regularly control the equation and eliminate dependence on mesh size of finite element solutions of softening plasticity.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2013年第3期523-530,共8页 Chinese Journal of Geotechnical Engineering
基金 国家杰出青年科学基金项目(50825803) 国家973计划课题项目(2012CB719803) 国家SWS自然科学基金项目(50908171)
关键词 非局部Mohr-Coulomb模型 有限元 塑性软化 网格敏感性 应力回代算法 non-local Mohr-Coulomb model finite element softening plasticity mesh dependence stress return algorithm
  • 相关文献

参考文献12

  • 1BJERRUM L. Progressive failure in slopes of over?consolidated plastic clays and clay shales[J]. Joumal of Soil Mechanics & Foundations Div, ASCE, 1967,93(5): 1 - 49.
  • 2ALSHmLI K A, ALSALEH M I, VOYIADJIS G Z. Modelling strain localization in granular materials using micropolar theory: Numerical implementation and verification[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 1525 - 1544.
  • 3张洪武,王辉,陈飚松,解兆谦.基于参数变分原理的Cosserat连续体弹塑性分析[J].固体力学学报,2007,28(2):157-163. 被引量:5
  • 4DE BORST R, MllILHAUS H B. Gradient-dependent plasticity: Formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992,35: 521 - 539.
  • 5李锡夔,S.Cescoto.梯度塑性的有限元分析及应变局部化模拟[J].力学学报,1996,28(5):575-584. 被引量:13
  • 6BAZANT Z P, JIRASEK M. Nonlocal integral formulations of plasticity and damage: Survey of progress[J]. Journal of Engineer Mechanics, ASCE, 2002, 128(11): 1119 - 1149.
  • 7ERINGEN A C. Theories of nonlocal plasticity[J]. International Journal of Engineering Science, 1983, 21: 741 -751.
  • 8DE BORST R. Some recent issues in computational failure mechanics[J]. International Journal of Engineering Science, 1966,4:179-202.
  • 9PUAUDIER-CABOT G; HAZANT Z P. Non-local damage theory[J]. Journal of Engineering Mechanics, ASCE, 1987, 113(10): 1512 - 1533.
  • 10VERMEER P A, BRlNKGREVE R B 1. A new effective non-local strain measure for softening plasticity[C]11 Localization and Bifurcation Theory for Soil and Rocks. Rotterdam: Balkema, 1994: 89 - 100.

二级参考文献20

  • 1张洪武,何素艳,李兴斯.正交各向异性弹塑性摩擦接触问题的数值求解[J].固体力学学报,2004,25(4):411-416. 被引量:19
  • 2Hongwu Zhang,Hui Wang,Guozhen Liu.Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies[J].Acta Mechanica Sinica,2005,21(4):388-394. 被引量:8
  • 3Belytschko T, Chiang H Y, Plaskacz E. High reso- lution two-dimensional shear band computations: Im- perfections and mesh dependence [ J ]. Computer Methods in Applied Mechanics and Engineering, 1994, 119(1-2) :1-15.
  • 4Needleman A. Material rate dependence and mesh sensitivity in localization problems [J]. Computer Methods in Applied Mechanics and Engineering, 1988,67(1) : 69-85.
  • 5Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials[J]. Geotechnique, 1987,37:271-283.
  • 6Bazant Z P , Jirasek M. Nonlocal integral formula- tions of plasticity and damage: Survey of progress[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(11) : 1119-1149.
  • 7Bazant Z P. Instability, ductility, and size effect in strain softening concrete[-J]. Journal of Engineer- ing Mechanics,ASCE, 1976, 102(2):331-344.
  • 8Vermeer P A, Brinkgreve R B J. A new effective non-local strain measure for softening plasticityI-P]. Localization and Bifurcation Theory for Soil and Rocks, 1994, Rotterdam : Balkema, 89-100.
  • 9Stromberg L,Ristinmaa M. FE-formulation of a non local plasticity theory[J]. Computer Methods in Ap plied Mechanics and Engineering, 1996,136 (1-2) 127-144.
  • 10Luzio G D, Bazant Z P. Spectral analysis of localization in nonlocal and over-nonlocal materials with softening plasticity or damage[J]. International journal of solids and structures, 2005, 42(23) : 6071-6100.

共引文献18

同被引文献156

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部