期刊文献+

低密度奇偶校验码加权大数逻辑译码研究 被引量:8

A Research on Weighted Majority-Logic Decoding for LDPC Codes
下载PDF
导出
摘要 针对低密度奇偶校验(LDPC)码加权大数逻辑(WMLG)译码物理意义问题,提出了一种基于最大对数最大后验概率(max-log MAP)译码的推导方法。该方法利用幂求和的对数近似表达式给出信息位的对数似然比(LLR),理论证明了WMLG译码与max-log MAP译码的等价性。仿真结果也进一步表明,与MAP译码相比,max-log MAP译码的复杂度大为降低,而译码性能的损失微乎其微。WMLG译码与max-log MAP译码的等价关系表明,基于WMLG译码的混合译码算法都可看作max-log MAP算法的改进,这对于设计LDPC码的新型混合译码算法有较好的指导作用。 A new derivation method of the weighted majority-logic(WMLG) decoding for low-density parity-check(LDPC) codes is proposed based on the maximum-logarithm(max-log) maximum a posteriori(MAP) decoding to illustrate the physical significance of WMLG decoding.The logarithm likelihood ratio(LLR) of information bit is approximated using the logarithm approximation to the sum of powers.Then it is theoretically proved that the WMLG decoding is identical to the max-log MAP decoding.Furthermore,the simulation results show that the max-log MAP decoding has almost the same error performance as the MAP decoding has,while the complexity is greatly reduced.The equivalence between the WMLG decoding and the max-log MAP decoding shows that all WMGL-based hybrid decoding algorithms can be regarded as revised versions of the max-log MAP decoding,which gives a guide to devise new hybrid decoding algorithms of LDPC codes.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第4期35-38,50,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61172022)
关键词 低密度奇偶校验码 加权大数逻辑 最大对数最大后验概率 low-density parity-check codes weighted majority-logic max-log maximum a posteriori
  • 相关文献

参考文献3

二级参考文献42

  • 1周立媛,张立军,陈常嘉.低密度校验码的混合比特反转译码算法[J].北京交通大学学报,2005,29(2):47-50. 被引量:3
  • 2Gallager R G.Low-density parity-check codes[J].IRE Trans.on Information Theory,1962,8(1):21-28.
  • 3Mackay D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans.on Information Theory,1999,45(2):399-431.
  • 4Kou Y,Lin S,Fossorier M P C.Low-density parity-check codes based on finite geometries:a rediscovery and new results[J].IEEE Trans.on Information Theory,2001,47(7):2711-2736.
  • 5Jiang M,Zhao C M,Shi Z H,et al.An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes[J].IEEE Communications Letters,2005,9(9):814-816.
  • 6Liu Z Y,Pados D A.A decoding algorithm for finite-geometry LDPC codes[J].IEEE Trans.on Communications,2005,53(3):415-421.
  • 7Ngatched T M N,Bossert M,Fahrner A,et al.Two bit-flipping decoding algorithms for low-density parity-check codes[J].IEEE Trans.on Communications,2009,57(3):591-596.
  • 8Li J,Zhang X D.Hybrid iterative decoding for low-density parity-check codes based on finite geometries[J].IEEE Communications Letters,2008,12(1):29-31.
  • 9Ngatched T M N,Takawira F,Bossert M.An improved decoding algorithm for finite-geometry LDPC codes[J].IEEE Trans.on Communications,2009,57(2):302-306.
  • 10Li G W,Feng G Z.Improved parallel weighted bit-flipping decoding algorithm for LDPC codes[J].IET Communications,2009,3(1):91-99.

共引文献4

同被引文献89

  • 1李晋,滑翰,华惊宇,尤肖虎.并行级联LDPC码译码迭代终止准则研究[J].通信学报,2006,27(4):95-100. 被引量:2
  • 2Gallager R G. Low density parity check codes[J]. IEEE Transactions on Information Theory, 1962, IT-8(1): 21-28.
  • 3Fossorier M, Mihaljevic M, and Imai H. Reduced complexity iterative decoding low density parity-check codes based on belief propagation [J]. IEEE Transactions on Communications, 1999, 47(5): 673-680.
  • 4Yazdani M, Hemati S, and Banihashemi A. Improving belief propagation on graphs with cycles[J]. IEEE Communications Letters, 2004, 8(1): 57-59.
  • 5Chen J H and Fossorier M. Decoding low-density parity check codes with normalized APP-Based algorithm[C]. Proceedings of the IEEE Global Telecommunication Conference, San Antonio, 2001: 1026-1030.
  • 6M. Near-optimum universal belief-propagation-based decoding of low-density parity-check codes[J]. IEEE Transactions Communications, 2002, 50(3): 406-414.
  • 7Chen J H, Dholakia A, Eleftheriou E, et al.. Reduced- complexity decoding of LDPC codes[J]. IEEE Transactions on Communications, 2005, 53(8): 1288-1299.
  • 8Kou Y, Lin S, and Fossorier M. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2711-2736.
  • 9Zhang J and Fossorier M. A modified weighted bit-flipping decoding of low-density parity-check codes[J]. IEEE Communications Letters, 2004, 8(3): 165-167.
  • 10Jiang M, Zhao C M, Shi Z, et al.. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes[J]. IEEE Communications Letters, 2005, 9(9): 814-816.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部