期刊文献+

模拟两相流动问题的修正扩展有限元方法 被引量:3

Corrected extended finite element method for two phase flow
下载PDF
导出
摘要 基于SUPG/PSPG稳定化方法,在处理两相流不连续问题时,引入修正扩展有限元方法使混合单元附加形函数满足单位分解原理,给出一种模拟两相流体流动问题的扩展有限元方法。在模拟两相流体流动过程中采用水平集方法捕捉流体运动界面。利用编制的计算程序模拟液体自由晃动问题,数值模拟结果与理论解一致。进一步采用本文方法和有限元方法模拟了溃坝流动问题,并将数值结果与实验结果进行比较,结果表明本文方法更有效。本文方法能够准确捕捉流体运动过程中两相界面的变化,且具有在计算过程中无需进行网格重构的优点。 An extended finite element method based on SUPG/PSPG is proposed to simulate the two phase flow problems.A corrected XFEM is introduced to ensure the blending element to satisfy the Partition of Unity in processing the discontinuity of the interface.Level set method is adopted to track the kinetic phase interface as the fluid flow.Free oscillation is numerically simulated with the presented method.The obtained numerical results are in consistent with the analytical and experimental results.Additionally,breaking dam problem is considered,the numerical solutions agree well with experimental results which illustrate the correctness and efficiency of the proposed method.No re-meshing is needed during the simulation of the two phase fluid flow and the moving interface can be accurately tracked by means of the presented method.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期121-127,共7页 Journal of Chongqing University
基金 中国核动力研究院核反应堆系统设计技术国家级重点实验室基金资助项目
关键词 扩展有限元 SUPG PSPG 水平集方法 两相流 数值模拟 XFEM SUPG/PSPG level set method two phase flow numerical methods
  • 相关文献

参考文献19

  • 1Idelsohn S R, Storti M A, Onate E. Lagrangian formulations to solve free surface incompressible inviscid fluid flows[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191 ( 6/7 ) : 583-593.
  • 2Donea J. Arbitrary lagrangian-eulerian finite element methods [ J ]. Computational Methods for Transient Analysis, 1983, 1: 473-516.
  • 3Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201 - 225.
  • 4Osher S, Sethian J A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton Jacobi formulation[J]. Journal of Computer Physics, 1988, 79(1): 12-49.
  • 5Devals C, Heniche M, Bertrand F, et al. A two-phase flow interface capturing finite element method [J]. International Journal for Numerical Methods in fluids, 2007, 53(5): 735-751.
  • 6Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal of Numerical Methods in Engineering, 1999, 46: 131-150.
  • 7Melenk J M, Babugka I. The partition of unity finite element method: Basic theory and applications [J ]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4): 289-314.
  • 8Fries T P. A corrected XFEM approximation without problems in blending elements[J]. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503-532.
  • 9Chessa J, Wang H W, Belytschko T. On the construction of blending elements for local partition ofunity enriched finite elements[J]. International Journal for Numerical Methods in Engineering, 2003, 57(7): 1015-1038.
  • 10Gracie R, Wang H W, Belytschko T. Blending in the extended finite element method by discontinuous Galerkin and assumed strain method[J]. International Journal for Numerical Methods in Engineering, 2008, 74(11) : 1645-1669.

同被引文献26

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部