期刊文献+

Mode Interaction at a Triple Zero Point of O(2) symmetric Nonlinear Systems with Two Parameters

Mode Interaction at a Triple Zero Point of O(2) symmetric Nonlinear Systems with Two Parameters
下载PDF
导出
摘要 We consider a triple zero point of nonlinear equations with O(2 symmetry, where the Jacobian has a zero eigenvalue of geometric multiplicity one and algebraic multiplicity three. We show that this triple zero point exhibits a new bifurcation phenomenon, that is, a mode interaction of the following three paths: bifurcation points from steady states, steady states and rotating waves to standing waves, rotating waves and modulated rotating waves respectively. We consider a triple zero point of nonlinear equations with O(2 symmetry, where the Jacobian has a zero eigenvalue of geometric multiplicity one and algebraic multiplicity three. We show that this triple zero point exhibits a new bifurcation phenomenon, that is, a mode interaction of the following three paths: bifurcation points from steady states, steady states and rotating waves to standing waves, rotating waves and modulated rotating waves respectively.
作者 吴微 孟繁友
出处 《Northeastern Mathematical Journal》 CSCD 2000年第1期10-20,共11页 东北数学(英文版)
基金 The NNSF!( 1 9571 0 3 3 ) of China
关键词 mode interaction BIFURCATION triple zero point O(2) symmetry nonlinear system mode interaction bifurcation triple zero point O(2) symmetry nonlinear system
  • 相关文献

参考文献9

  • 1[1]Kuramoto, Y., Diffusion indused chaos in reaction systems, Progr. Theoret. Phys. Suppl., 64(1978), 346-367.
  • 2[2]Wu, W., Aston, P.J., Spence, A., Rotating waves from Hopf bifurcations in equations with O(2)-symmetry, SIAM J. Sci. Comput., 15(3)(1994), 495-510.
  • 3[3]Bajaj, A.K., Sethna, P.R., Bifurcation in three-dimensional motions of articulated tubes, Trans. ASME, 49(1982), 606-618.
  • 4[4]Aston, P.J., Spence, A., Wu, W., Bifurcation to rotating waves in equations with O(2) symmetry, SIAM J. Appl. Math., 52(3)(1992), 792-809.
  • 5[5]Wu, W., Spcnce, A., Cliffe, K.A., Steady-state/Hopf mode interaction at a symmetry breaking Takens-Bogdanov point, IMA J. Numer. Anal., 14(1994), 137-160.
  • 6[6]Wu, W., On nondegeneracy of Hopf points emanating from a Z2-symmetry breaking Takens-Bogdanov point, Appl. Math. Lett., 6(2)(1991), 9-12.
  • 7[7]Aspence, A., Cliffe, K.A., Jepson, A.D., A note on the calculation of paths of Hopf bifurcations, J. Comput Appl. Math., 26(1989), 125-131.ston, P. J., Spence, A., Wu, W., Numerical investigation of the bifurcation from traveling waves to modulated traveling waves, Internat. Set. Numer. Math., 104(1992), 35-47.
  • 8[8]Spence, A., Cliffe, K.A., Jepson, A.D., A note on the calculation of paths of Hopf bifurcations, J. Comput Appl. Math., 26(1989), 125-131.
  • 9[9]Werner, B., Janovsky, V., Computation of Hopf branches bifurcating from Takens-Bogdanov points for problems with symmetries, In: Bifurcation and Chaos (eds. Seydel, R., et. Al.), Conf. Proc. Wurzburg, Birkhauser, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部