摘要
Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.
Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavern from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.
基金
Project(2010CB732005) supported by the National Basic Research Program of China
Projects(51279136, 51209164) supported by the National Natural Science Foundation of China