期刊文献+

Density-based trajectory outlier detection algorithm 被引量:10

Density-based trajectory outlier detection algorithm
下载PDF
导出
摘要 With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm. With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期335-340,共6页 系统工程与电子技术(英文版)
基金 supported by the Aeronautical Science Foundation of China(20111052010) the Jiangsu Graduates Innovation Project (CXZZ120163) the "333" Project of Jiangsu Province the Qing Lan Project of Jiangsu Province
关键词 density-based algorithm trajectory outlier detection(TRAOD) partition-and-detect framework Hausdorff distance density-based algorithm; trajectory outlier detection(TRAOD); partition-and-detect framework; Hausdorff distance
  • 相关文献

参考文献18

  • 1N. Liu, P. Peng, Z. Shen, et al. Optimization of traffic infor- mation processing based on data mining from GPS historical data. Proc.the 2rid hlternational Con/erence on Transl)otva- tion Engineering, 2009: 3544-3549.
  • 2A. Boukerche. S. Amarah. An efficient data extraction mecha- nism for mining association rules from wireless sensor net- works. Proc. of the IEEE btternational Colerence on Com- munications, 2007: 3936-3941.
  • 3J. Lee, R. Mateo, B. Gerardo, et al. Location-aware agent using data mining for the distributed location-based ser- vices. Proc. the International Coterence oo Computational Science and Its Applications, 2006: 867-876.
  • 4L. O. Alvares, G. Oliveira, C. Heuser, et al. A framework lbr trajectory data preprocessing for data mining. Proc. of the 21st International Conference on Sq[~ware Engineering aml Knowledge Engineering, 2009: 698-702.
  • 5V. Bogorny, C. Heuser, L. Alvarcs. A conceptual data model for trajectory data mining. Proc. o['the 6th htternational Con- rence on Geographic hormation Science, 2010:1-15.
  • 6S. Qiao, T. Li, J. Peng. Parallel sequential pattern mining of massive trajectory data. International Journal of Computa- tional hztelligence Systems, 2010, 3(3): 343-356.
  • 7D. Pokrajac, N. Reljin, N. Pejcic, et al. Detection of sus- picious activity using incremental outlier detection algo- rithms. Proc. of the Signal and Data Processing of Small Tar- gets, 2009: 901-912.
  • 8L. Liu, J. Fan, S. Qiao, et al. Efficiently mining outliers from trajectories of unrestraint movement. Proc. of the 3rd Interna- tional Cot!ference on Advanced Computer Theo and Engi- neering, 2010: 2261-2265.
  • 9C. Isaksson, M. Dunham. A comparative study of outlier de- tection algorithms. Proc. of the 6th International Conference on Machine Learning and Data Mining in Pattern Recogni- tion, 2009: 440-453.
  • 10E. M. Knorr, R. T. Ng, V. qcakov. Distance-based outliers: algorithms and applications. The VLDB Journal, 2000, 8(3/4): 237-253.

同被引文献57

  • 1盛新,陈沛帅.最短路算法(dijstra算法)的研究[J].科技信息,2008(26):82-84. 被引量:4
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3Angiulli F,Basta S,Pizzuti C.Distance based detec tion and prediction of outliers[J].Knowledge and Data Engineering IEEE,2006,18(2):145-160.
  • 4He Zengyou,Xu Xiaofei,Deng Shengchun.Discoer ing cluster based local outliers[J].Pattern Recogni tion Letters,2003,24(9 10):1641-1650.
  • 5Cao Hui,Si Gangquan,Zhang Jinfeng,et al.Enhan cing effectiveness of density based outlier mining scheme with density similarity neighbor based out lier factor[J].Expert Systems with Applications,2010,37(12):8090-8101.
  • 6Li Xiangjun,Rao Fen.An rough entropy based ap proach to outlier detection[J].Journal of Computa tional Information Systems,2012,8(24):10501-10508.
  • 7Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Chen Weidong,Naughton J F,Bernstein P A.Proceedings of the 2000 ACM SIGMOD International Confer ence on,Management of Data.Dallas,Texas:ACM,2000:93-104.
  • 8Tang Jian,Chen Zhixiang,Fu A W,et al.Enhancing effectiveness of outlier detections for low-density pat terns[C]//Chen Ming Syan,Yu P S,Liu Bing.Ad vances in Knowledge Discover and Data Ming,Lec ture Notes in Computer Science.Taipei,Taiwan:Springer Berlin Heidelberg,2002,2336:535-548.
  • 9Jin Wen,Tung Anthony K H,Han Jiawei,et al.Ranking outliers using symmetric neighborhood re lationship[C]//Ng W K,Kitsuregawa M,Li Jian Zhong,et al.Advances in Knowledge Discovery and Data Ming,Lecture Notes in Computer Science.Sin gapore:Springer Berlin Heidelberg,2006,3918:577-593.
  • 10Girolami M.Mercer kernel based clustering in fea ture space[J].Neural Networks IEEE,2002,13(3):780-784.

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部