期刊文献+

一种使用简化预排序的k-支配Skyline查询算法 被引量:4

K-Dominant Skyline Computation Using Simplified Presort
下载PDF
导出
摘要 近年来,Skyline查询在多目标决策、数据挖掘、数据库可视化等方面得到广泛应用.然而在高维空间环境下,skyline查询因为返回的结果集过大而不能提供有用的信息.因此,学术界提出了k-支配skyline查询的概念.它通过弱化数据点之间的支配关系,使数据点间更容易产生支配关系,从而使结果集的大小保持在一个合适的范围内.现有k-支配skyline查询算法分为建立索引和不建立索引两种类型.其中不建立索引的算法在高维空间,反相关数据和渐近输出等方面表现比较差,而基于索引的算法花费大量时间去建立索引,整体性能都不高.本文提出一种基于简化预排序的k-支配skyline查询算法(SPA),实现用O(n)的时间复杂度对数据进行简化预排序.理论论证和实验数据都显示了SPA算法远比国内外现有的最好算法更加高效. Skyline query has been widely used for multi-criteria decision making, data mining, etc. However, by increasing the number of attributes, the probability that a point dominates another one is reduced significantly. As a result, the number of skyline points becomes too numerous to provide any useful information. Recently, k-dominant skyline query has been introduced, which can reduce the number of retrieved points by relaxing the definition of dominance. Existing k-dominant skyline query algorithms are divided into no indexing and index based types. The no indexing algorithm performs poorly on high dimensional space and anti-correlated data. And the index-based algorithm spends a lot of time to build the index. The overall efficiency is not high. In this paper, we propose a simplified pre-sorted algorithm ( SPA ) to solve the problem of k-dominant skyline computation. Theoretical arguments and experi- mental data show that the SPA algorithm is more efficient than all of the existing methods.
作者 黄荣跃 赵雷
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第5期1054-1059,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61073061)资助
关键词 SKYLINE 数据库查询 k-支配skyline 决策支持 skyline database query k-dominant skyline decision support
  • 相关文献

参考文献3

二级参考文献10

  • 1刘欣,余靖,刘国华.基于窗口查询的轮廓查询算法[J].燕山大学学报,2005,29(5):398-402. 被引量:9
  • 2Stephan B(o)rzs(o)nyi,Donald Kossmann,Konrad Stocker.The skyline Operator//Proceedings of the 17th International Conference on Data Engineering.Heidelberg,Germany,2001:421-430.
  • 3Chan Chee-Yong,Jagadish H V,Tan Kian-Lee,Tung Anthony K H,Zhang Zhen-Jie.Finding k-dominant Skylines in high dimensional space//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data.Chicago,Illinois,USA,2006:503-514.
  • 4Ronald Fagin,Amnon Lotem,Moni Naor.Optimal Aggregation Algorithms for Middleware.Journal of Computer and System Sciences,2001,66(4):614-656.
  • 5Jan Chomicki,Parke Godfrey,Jarek Gryz,Dongming Liang.Skyline with Presorting//Proceedings of the 19th International Conference on Data Engineering.Bangalore,India,2003:717-816.
  • 6Tan Kian-Lee,Eng Pin-Kwang,Ooi Beng Chin.Efficient progressive skyline computation//Proceedings of the 27th International Conference on Very Large Data Bases.Roma,Italy,2001:301-310.
  • 7Donald Kossmann,Frank Ramsak,Steffen Rost.Shooting stars in the sky:An online algorithm for skyline queries//Proceedings of the 28th International Conference on Very Large Data Bases.Hong Kong,China,2002:275-286.
  • 8Papadias Dimitris,Tao Yufei,Fu Greg,Seeger Bernhard.An optimal and progressive algorithm for skyline queries//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data.San Diego,California,USA,2003:467-478.
  • 9Yiu Man Lung,Mamoulis Nikos.Efficient processing of topk dominating queries on MultiDimensional data//Proceedings of the 33rd International Conference on Very Large Data Bases.Vienna,Austria,2007:483-494.
  • 10Chan Chee-Yong,Jagadish H V,Tung Anthony K H,Zhang Zhen-Jie.On high dimensional Skylines//Proceedings of the 10th International Conference on Extending Database Technology.Munich,Germany,2006:478-495.

共引文献14

同被引文献13

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部