期刊文献+

多重分形分析在肌电信号模式识别中的应用 被引量:10

The Application of Multifractal in EMG Pattern Recognition
下载PDF
导出
摘要 为提高肢体运动模式识别率,论文提出了一种经验模态分解与多重分形分析相结合的模式识别方法。先用经验模态分解得到代表肌电信号细节的多层内在模态函数,然后在内在模态函数上进行多重分形分析,提取其广义维数谱,作为肌电信号多模式识别的特征向量。最后以改进的K最近邻分类方法-KNN模型增量学习算法,实现对动作模式的识别。在对张开、合拢及腕内旋、腕外旋4个动作的识别实验中,正确识别率达到了93.0%。结果表明,方法具备一定的实用性,可用于遥操作机器人系统中操作者手腕运动模式识别。 In order to improve the pattern recognition rate of physical movement, a new pattern recognition method has been proposed through the combination of empirical mode decomposition ( EMD ) and multifractal analysis. Firstly, multilayer intrinsic mode functions (IMF), which represent the details of surface electromyography( sEMG), are obtained using EMD. Then multifractal spectrum, which can be used as eigenvector in pattern recognition of sEMG, is extracted from IMF by muhifractal analysis. Finally, the improved K nearest neighbor method-KNN model based incremental learning method is used to recognize various movements of hand. The experiment, designed to classify four hand gestures including hand open, hand grasp, wrist pronation and wrist supination, shows that by using this method, the recognition rate has reached 93.0%, which demonstrates the practicality of this approach and its possible application in the pattern recognition of manipulator's wrist movement.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第2期282-288,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(60903084 61172134) 浙江省自然科学基金项目(Y1111189 LY12F03007 LY12F03006) 浙江省科技计划项目(2010C33075 2012C33075)
关键词 表面肌电信号 模式识别 多重分形分析 经验模态分解 K最近邻模型法 surface electromyography pattern recognition multifractal analysis empirical mode decomposition k nearest neighbor mode
  • 引文网络
  • 相关文献

参考文献25

  • 1Cifrek M, Medved V, Tonkovic S,et al. Surface EMG Based MuscleFatigue Evaluation in Biomechanics [ J]. Clinical Biomechanics,2009,24(4) :327-340.
  • 2Arjunan S P, Kumar D K. Fractal Properties of SurfaceElectromyogram for Classification of Low Level Hand Movementsfrom Single-Channel Forearm Muscle Activity [ J]. Journal ofMechanics in Medicine and Biology,2011,11(3) :581-590.
  • 3Phinyomark A, Phukpattaranont P, Limsakul C. Fractal AnalysisFeatures for Weak and Single-Channel Upper-Limb EMG Signals [ J].Expert Systems with Applications ,2012,39( 12) :11156-11163.
  • 4Mehran T, Chan ADC, Miri A. Multiplicative Multi-FractalModeling of Electromyography Signals for Discerning NeuropathicConditions [ J]. Journal of Electromyography and Kinesiology,2010,20(6) :1244-1248.
  • 5Therapeutic Effect of 630 nm U.ht-Emitting Diodes Iradiation on theRecovery of Exercise-Induced Hand Muscle Fatigue with Surface Elec-tromyogram[J]. International Journal of Photoenergy ,2012.
  • 6王人成,黄昌华,常宇,杨年峰.表面肌电信号的分形分析[J].中国医疗器械杂志,1999,23(3):125-127. 被引量:20
  • 7Brodu N,Lotte F,Lecuyer A. Exploring Two Novel Features forEEG-Based Brain-Computer Interfaces : Multifractal Cumulants andPredictive Complexity[ J]. Neurooomputing,2012,70:87-94.
  • 8Easwaramoorthy D,Uthayakumar R. Improve Generalized FractalDimensions in the Discrimination between Healthy and Epileptic EEGSi.ials[J]. Journal of Computational Science ,2011,2(1) :31-38.
  • 9Dick 0 E,Svyatogor I A. Potentialities of the Wavelet and MultifractalTechniques to Evaluate Changes in the Functional State of the HumanBrain [J]. Neurooomputing ,2012,82 : .7-215.
  • 10Huang N E,Shen 2, Long S R, et al. The Empirical ModeDecomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [ J]. Proceeding of the RoyalSociety London A, 1998,454 : 903-995.

二级参考文献60

共引文献73

同被引文献121

引证文献10

二级引证文献85

;
使用帮助 返回顶部