期刊文献+

结合EM/MPM算法和Voronoi划分的图像分割方法 被引量:9

Combining the EM/MPM and Voronoi Tessellation for Image Segmentation
下载PDF
导出
摘要 为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。 In order to realize image segmentation without prior knowledge on model parameters, this paper presents a new region and statistics based approach, which combines Voronoi tessellation technique and expectation-maximization/maximi- zation of the posterior marginal (EM/MPM) algorithm. By Voronoi tessellation, the domain of a give image is partitioned into ~oronoi polygons. The homogeneous regions in which the pixel intensities are assumed to follow independent and iden- tical Gaussian distribution are constructed by a subset of polygons. After an image model is built, EM/MPM scheme is uti- lized to govern image segmentation, where the MPM criterion is for segmentation and the EM algorithm is for parameter esti- mation. To verify the validness of the proposed algorithm, testing is carried out with synthetic and real images, respective- ly, and the results show that the proposed algorithm works well on images segmentation. This paper also compares segmen- tation results of real and synthetic images using the proposed approach and pixel based MRF approach. As a result, the Voronoi polygons fitting homogeneous regions is more accurate and proper to trace the texture structures.
出处 《信号处理》 CSCD 北大核心 2013年第4期503-512,共10页 Journal of Signal Processing
基金 国家自然科学基金资助项目(编号:41271435) 国家海洋局海洋溢油鉴别与损害评估技术重点实验室开放研究基金资助(编号:201211) 中国科学院数字地球重点实验室开放基金(2012LDE013)
关键词 VORONOI划分 最大期望值算法 最大边缘概率算法 图像分割 Voronoi tessellation Expectation Maximization (EM) Maximization of the Posterior Marginal (MPM) Im- age segmentation
  • 相关文献

参考文献4

二级参考文献39

  • 1余鹏,封举富.基于高斯混合模型的纹理图像分割[J].中国图象图形学报(A辑),2005,10(3):281-285. 被引量:27
  • 2黄贤武,朱莉,仲兴荣,王加俊.一种新的基于时空马尔可夫随机场的运动目标分割技术[J].电子与信息学报,2006,28(2):367-371. 被引量:10
  • 3岳佳,王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息,2006,22(11X):244-246. 被引量:51
  • 4王平波,蔡志明,刘旺锁.混合高斯概率密度模型参数的期望最大化估计[J].声学技术,2007,26(3):498-502. 被引量:21
  • 5Michael G. Ross and Leslie Pack Kaelbling, Segmentation According to Natural Examples: Learning Static Segmentation from Motion Segmentation [ J ], IEEE Transactions On Pattern Analysis And Machine Intelligence, 2009, Vol. 31, No. 4: 661-676.
  • 6Andreas Klaus, Mario Sormann and Konrad Kamer, Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure [ C], The 18th International Conference on Pattern Recognition, 2006.
  • 7Jue Wang and Michael F. Cohen, An Iterative Optimization Approach for Unified Image Segmentation and Matting [ C ] , Proceedings of the Tenth IEEE International Conference on Computer Vision, 2005.
  • 8Kamijo S. , Ikeuchi K. and Sakauchi M. : Segmentations of spatio-temporal images by spatio-temporal markov random field model [C] ,Proceedings of EMMCVPR, 2001.
  • 9Larsen E. S. , Mordohai P. , Pollefeys M. and Fuchs H. , Temporally consistent reconstruction from multiple video streams using enhanced belief propagation [ C ], Proceedings of ICCV, 2007.
  • 10B. K. Horn and B. Schunck, Determining optical flow [ J ], Artificial Intelligence, 1981 ,Vol. 1 7, No. 1 : 1 85-203.

共引文献9

同被引文献92

  • 1苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 2邵春丽,胡鹏,黄承义,彭琪.DELAUNAY三角网的算法详述及其应用发展前景[J].测绘科学,2004,29(6):68-71. 被引量:65
  • 3汤亚波,刘晓军,徐守时.一种遥感图像海上船舶多级自适应聚类分割方法[J].计算机应用,2005,25(9):2126-2127. 被引量:7
  • 4侯一民,郭雷.一种基于马尔可夫随机场的SAR图像分割新方法[J].电子与信息学报,2007,29(5):1069-1072. 被引量:28
  • 5Seljuq U, Hussain R. Synthetic aperture radar (SAR) image segmentation by fuzzy c-means clustering teclmique wilh threshol- ding for iceberg images [J]. Computational Ecology and Soft- ware, 2014, 4(2) : 129-134.
  • 6Ranganath H S, Bhatnagar A. Image segmentation using two-lay- er pulse coupled neural network with inhibitory linking field [J]. International Journal on Computing, 2011, 1 ( 2 ) : 29-34. [DOI: 10.5176 2010-2283 1.2. 35].
  • 7Hanbay K, Talu M F. Segmentation of SAR images using im- proved artificial bee colony algorithm and neutrosuphic set [ J ]. Applied Soft Computing, 2014, 21 (8): 433-443. [ DOI: 10. 1016/j. asoc. 2014.04. 008].
  • 8Wang Y, Li Y, Zhao Q H. Segmentation of high-resolution SAR image with unknown number of classes based on regular tessella- tion and RJMCMC algorithms [ J ]. International Journal of Re- mote Sensing, 2015, 36 (5) : 1290-1306. [DOI: 10. 1080/ 01431161. 2015. 1009655].
  • 9Dong Y, Forster B C, Milne A K. Comparison of radar image segmentation by Gaussian and Gamma-Markov random field mod- els [ J]. International Journal of Remote Sensing, 2003,24(4) : 711-722. [ DOI: 10. 1080 /0143116021 00013322].
  • 10Duschesnay E, Montois J J, Jacquelet Y. Cooperative agents so- ciety organized as an irregular pyramid : a mammography segmen- tation apphcation [ J ]. Pattern Recognition Letters, 2003, 24(14): 2435-2445. [DOI: 10.1016/S0167-8655 (03 000 77-1].

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部