期刊文献+

GLOBAL DYNAMICS OF A CHOLERA MODEL WITH TIME DELAY 被引量:1

GLOBAL DYNAMICS OF A CHOLERA MODEL WITH TIME DELAY
原文传递
导出
摘要 The global dynamics of a cholera model with delay is considered. We determine a basic reproduction number R0 which is chosen based on the relative ODE model, and establish that the global dynamics are determined by the threshold value R0. If R0 〈 1, then the infection-free equilibrium is global asymptotically stable, that is, the cholera dies out; If R0 〉 1, then the unique endemic equilibrium is global asymptotically stable, which means that the infection persists. The results obtained show that the delay does not lead to periodic oscillations. Finally, some numerical simulations support our theoretical results.
出处 《International Journal of Biomathematics》 2013年第1期143-160,共18页 生物数学学报(英文版)
关键词 Cholera model DELAY Lyapunov functional global stability. 时滞模型 全局动力学 霍乱 全局渐近稳定 地方病平衡点 周期性波动 数值模拟 E模型
  • 引文网络
  • 相关文献

参考文献30

  • 1J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti:An epidemic model, Lancet 377 (2011) 1248-1255.
  • 2V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 choleraepidemic in the European Mediterranean region, Rev. Epidera. Sante Publ. 27 (1979)121-132.
  • 3C. T. Codego, Endemic and epidemic dynamics of cholera: The role of theaquatic reservoir, BMC Infect Dis. 1(1) 2001, http://www.biomedcentral.com/1471-2334/1/1.
  • 4J, N. S. Eisenberg, M. A. Brookhart, G. Rice, M. Brown and J. M. Colford Jr.,Disease transmission models for public health decision-making: Analysis of epidemicand endemic conditions caused by waterborne pathogens, Environ. Health Perspect.110 (2002) 783-790.
  • 5M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modeling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput. 152(2004) 385-402.
  • 6H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multi-group SIR epidemic models, Canadian Appl. Math. Quart. 14 (2006) 259-284.
  • 7J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations(Springer, New York, 1993).
  • 8D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element inthe ability of V. cholerae to cause epidemics? PLoS Med. 3 (2006) 0063-0069.
  • 9D. L, Heymann (ed.), Control of Communicable Diseases Manual、19th edn. (Amer-ican Public Health Association, Washington, 2008).
  • 10J. Jiao and L. Chen, Global attractivity of a stage-structure variable coefficientspredator-prey system with time delay and impulsive perturbations on predators,Int. J. Biomath. 1 (2008) 197-208.

引证文献1

;
使用帮助 返回顶部