期刊文献+

收缩邻居节点集方法求解有向网络的最大流问题 被引量:1

Contracting Neighbor-Node-Set Approach for Solving Maximum Flow Problem in Directed Network
下载PDF
导出
摘要 最大流问题在许多领域有广泛的应用,然而随着网络规模的增加,传统的算法无法快速高效地求解最大流问题.对一个给定的有向网络,文中提出一种收缩邻居节点集的方法(CNA)求解其最大流.该方法通过收缩邻居节点集有效降低网络规模,使经典算法及改进算法可直接使用.首先给出收缩邻居节点集的条件,接着给出依据收缩条件构建目标网络的算法,最后利用经典算法求解目标网络的最大流以实现初始网络最大流的最优近似.实验结果表明CNA不仅平均能将目标网络的规模降至初始网络的一半,且能以较小的误差求得初始网络的最大流. Maximum flow problem is widely applied in many fields. However, with the significant increase of network size, classic algorithms cannot solve maximum flow quickly and efficiently. In this paper, a method named Contracting Neighbor-node-set Approach (CNA) is presented to get its maximum flow approximately in a given directed flow network. Aiming at reducing the size of network, the method contracts some nodes and edges so that the classic algorithms can be used directly to approximately solve maximum flow problem with less time complexity. Firstly, the condition of contracting neighbor-node-set is given. Then, the algorithm is presented to construct the target network. Finally, the classic algorithms are applied on the target network to approximately get maximum flow of original network. The experimental results show that CNA not only obtains the maximum flow of original network with few errors, but also reduces tl^e scale of the target flow network to half size of the original flow network averagely.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第5期425-431,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然基金项目(No.61073117 61175046) 国家973计划项目(No.2007CB311003) 安徽省自然基金项目(No.11040606M) 安徽省高等学校省级自然科学基金项目(No.KJ2013A06)资助
关键词 最大流 收缩邻居节点集方法 有向网络 Maximum Flow, Contracting Neighbor-Node-Set Approach (CNA), Directed Network
  • 相关文献

参考文献19

  • 1张宪超,陈国良,万颖瑜.网络最大流问题研究进展[J].计算机研究与发展,2003,40(9):1281-1292. 被引量:52
  • 2Ford J L R, Fulkerson D R. Maximum Flow through a Network. Ca- nadian Journal of Mathematics, 1956, 8 (5) : 399-404.
  • 3Edmonds J, Kaxp R M. Theoretical Improvements in Algorithmic Efficiency for Networks Flow Problems. Journal of ACM, 1972, 19 (2) : 248-264.
  • 4Dinic E A. Algorithm for Solution of a Problem of Maximum Flow in a Network with Power Estimation. Soviet Mathematics Doklady, 1970, 2(5) : 1277-1280.
  • 5Karzanov A V. Determining the Maximum Flow in a Network by the Method of Pro-flows. Soviet Mathematics-Doklady, 1974, 15 ( 3 ) : 434 -437.
  • 6Goldberg A V. The Partial Augment-Relabel Algorithm for the Maxi- mum Flow Problem//Proe of the 16th Annual European Symposium on Algorithms. Karlsruhe, Germany, 2008:466-477.
  • 7Goldberg A V, Rao S. Beyond the Flow Decomposition Barrier. Journal of ACM, 1998, 45 (5) : 783-797.
  • 8Caliskan C. A Faster Polynomial Algorithm for the Constrained Max- imum Flow Problem. Computers & Operations Research, 2012, 39(11) : 2634-2641.
  • 9Caliskan C. A Computational Study of the Capacity Scaling Algo- rithm for the Maximum Flow Problem. Computers & Operations Research, 2012, 39(11): 2742-2747.
  • 10Caliskan C. A Double Scaling Algorithm for the Constrained Maxi- mum Flow Problem. Computers & Operations Research, 2008, 35 (4) : 1138-1150.

二级参考文献126

  • 1R K Ahuja, J B Orlin. A fast and simple algorithm for the maximum flow problem. Oper Res, 1989, 37(5) : 748~759.
  • 2R K Ahuja, J B Orlin, R E Tarjan. Improved time bounds for the maximum flow problem. SIAM J Computing, 1989, 18(5): 939-954.
  • 3N Alon. Generating pseudo-random permutations and maximum flow algorithms. Information Processing Letters, 1990, 35 ( 4 ) :201-203.
  • 4V King, S Rao, R Tarjan. A faster deterministic maximum flow algorithm. J Algorithms, 1994, 17(3): 447~474.
  • 5J Cheriyan, T Hagerup, K Mehlhom. An O( n^3)-time maximum flow algorithm. SIAMJ Computing, 1996, 25(6): 1144~1170.
  • 6H N Gabow. Scaling algorithms for network problems. J Comput System Sci, 1985, 31(2): 148-168.
  • 7R K Ahuja, J B Orlin. Distance-directed augmenting path algorithms for the maximum flow problem. Naval Research Logisties Quarterlv. 1991. 38(2): 413~430.
  • 8V M Malhotra, M P Kumar, S N Mahesh-wari. An O ( | V^3| )algorithm for finding maximum flows in networks. Information Processing Letters, 1978, 7(6) : 277~278.
  • 9A V Goldberg, R E Tarjan. Finding minimum-cost circulations by successive approximation. Math Oper Res, 1990, 15(3): 430~466.
  • 10D Hochbuam. The pseudoflow algorithm and the pseudoflow-based simplex for the maximum flow problem. In: R E Bixby, E A Boyd, Roger et al eds. Proc of the Integer Programming and Combinatorial Optimization 6th Int' l Conf ( LNCS 1412 ) .Heidelberg: Springer-Verlag, 1998. 325~337.

共引文献51

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部