摘要
一些基于标准支持向量机的图像水印技术,使图像水印的效果得到一定改善,但降低了图像水印技术的效率。针对这个问题,用光滑支持向量机取代标准支持向量机,结合图像的局部相关特性来确定图像的最佳嵌入位置和嵌入强度,提出一种基于光滑支持向量机的图像水印技术,并做了仿真实验。实验表明,这种技术与以往基于标准支持向量机的图像水印技术相比,不仅效果更优,而且效率也显著提高。
Using a class of new smoothing functions, the problem of smooth support vector machine (SVM) was studied. A new model of SVM, 3rd-order polynomial smooth support vector machine (3SSVM), was proposed, and its global convergence was established. Numerical experiments were carried out to evaluate 3SSVM, using Newton-Armijo algorithm. The results show that 3SSVM is better than PSSVM and SSVM in the classification performance and computational speed. A better theoretical support is provided for applications of smooth support vector machine.
出处
《计算机工程与设计》
CSCD
北大核心
2013年第6期2075-2078,2194,共5页
Computer Engineering and Design
基金
广东省科技计划基金项目(2009B010800054)
东莞市科技计划基金项目(2012108102027)
关键词
光滑支持向量机
标准支持向量机
图像水印
人眼视觉系统
图像局部相关性
smooth support vector machine
standard support vector machine
image watermarking
human visual system (HVS)
image local correlation