期刊文献+

基于各向异性高斯核方向导数滤波器的图像轮廓检测 被引量:4

Image contour detection based on anisotropic Gaussian kernel directional derivatives filter
下载PDF
导出
摘要 针对图像轮廓检测中存在大量毛刺和虚假轮廓的问题,提出一种基于各向异性高斯核方向导数滤波器和图论方法的图像轮廓检测算法。利用各向异性高斯核方向导数滤波器提取图像中各个方向的变化信息,使用阈值化方法实现图像中轮廓的初始检测。将初始检测的轮廓转换成加权无向图表示,利用图论中提取最短路径的方法递归地将轮廓的无向图转换成最短路径的集合。最后,使用阈值化方法消除初始轮廓检测结果中的毛刺和虚假轮廓。将检测结果与现在广泛使用的Canny检测结果相比,该方法基本消除了真实轮廓附近的毛刺,大大减少了虚假轮廓,获得了更好的检测性能。 Aiming at problem that there are a lot of burrs and false contours in image contour detection,a contour detection algorithm based on anisotropic Gaussian kernal directional derivatives(ANDDs) filter and the graph theory is proposed.ANDDs filter is used to extract change information of image in all orientation.Based on which the primitive detection of contour in image is realized utilizing threshold procedure.Transform primitive detected contours into the representation of undirected and weighted graph,then the algorithm extracting the shortest path of an undirected and weighted graph is used iteratively to subdivide the graph into a set of path.Finally,threshold method is used to eliminate the burrs and false contours in primitive contour detection.Test results show that the proposed method basicly eliminate burrs around real contour and greatly reduces false contours,and obtain better detecting performance,compared with Canny method.
出处 《传感器与微系统》 CSCD 北大核心 2013年第6期126-129,共4页 Transducer and Microsystem Technologies
基金 贵州省科学技术基金资助项目(黔科合J字[2011]2194号)
关键词 各向异性高斯核方向导数滤波器 轮廓检测 最短路径 anisotropic Gaussian kernel directional derivatives(ANDDs) filter contour detection the shortest path
  • 相关文献

参考文献8

  • 1Hu Weiming,Zhou Xue, Li Wei ,et al. Active contour-based visual tracking by integrating colors, shapes, and motions [ J ]. IEEE Trans on Image Processing,2013,22 (5) : 1778 --1792.
  • 2Roberts L G. Machine perception of three-dimensional solids[ M ]. Cambridge : kiiT Press, 1965.
  • 3Prewitt J M S. Object enhancement and extraction[ M ]. New York: Academic Press, 1970.
  • 4Sobel I E. Camera models and machine perception [ D ]. Palo M- to, Calif: Stanford University ,1970.
  • 5Mart D,Hildreth E. Theory of edge detection [ J ]. Proc R Soc of Lond,1980, B207 : 187 --217.
  • 6Canny J. A computational appruach to edge detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986,8 (6) : 679 --698.
  • 7Shui Penglang,Zhang Weichuan. Noise-robust edge detector com- bining isotropic and anisotropic Gaussian kernels [ J ]. Pattern Recognition ,2012,45 (2) :80fi -820.
  • 8Basu M. Gaussian-based edge-detection methods--A survey[ J ]. IEEE Trans on Systems, Man, and Cybernetics, 2002,32 (3) : 252 -260.

同被引文献31

  • 1Wong A, Mishra A, Fieguth P, et al. An adaptive Monte Carlo ap- proach to nonlinear image denoising[ C ]//Proc of International Con- ference on Pattern Recongnition. 2008 : 1-4.
  • 2Juang P A , Wu Mingni. Ultrasound speckle image process using wie- ner pseudo-inverse filter[ C]//Proc of the 33rd Annual Conference on Industrial Electronics Society. 2007:2446- 2449.
  • 3Perona P, Maljk J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pattern Analysis and Machine In- tolling, 1990,12 (7) :629- 639.
  • 4Yu Y, Acton S T. Speck reduction anisotropic dissusion[ J]. IEEE Trans on Image Processing,2002,11 ( 11 ) :1260- 1270.
  • 5Voci F, Eiho S, Sugimoto N, et al. Estimating the gradient threshold in the Perona-Malik equation applications of senentation the Perona- Malik equation applications of segmentation [ J ]. [EEE Signal Pro- cessing Magazine,2004,5(4) :39-46.
  • 6KLEIN L A. A Boolean algebra approach to muhip]e sensor voting fu- sion [ J ]. I E E E Trans on Areospace Electronic Systems, 1993,29 (1) :317-327.
  • 7Soille P, Vogt P. Morohological segmentation of binary patterns [ J ]. Pattern Recognition Letters, 2009,30 ( 4 ) : 356 - 359.
  • 8刘芬,孙丰荣,耿俊卿,秦晓红,姚桂华,张运.一种基于各向异性扩散方程的医学超声图像降噪方法[J].山东大学学报(工学版),2009,39(5):38-42. 被引量:8
  • 9余锦华,汪源源.基于各向异性扩散的图像降噪算法综述[J].电子测量与仪器学报,2011,25(2):105-116. 被引量:50
  • 10王常虹,陈韬亦,屈桢深.使用中值-各向异性扩散的超声图像去噪算法[J].哈尔滨工程大学学报,2011,32(3):314-321. 被引量:14

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部